Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 27(7): 9803-9814, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31045129

RESUMO

We demonstrate theoretically and experimentally a high level of control of the four-wave mixing process in an inert gas-filled inhibited-coupling guiding hollow-core photonic crystal fiber. The specific multiple-branch dispersion profile in such fibers allows both correlated and separable bi-photon states to be produced. By controlling the choice of gas and its pressure and the fiber length, we experimentally generate various joint spectral intensity profiles in a stimulated regime that is transferable to the spontaneous regime. The generated profiles may cover both spectrally separable and correlated bi-photon states and feature frequency tuning over tens of THz, demonstrating a large dynamic control that will be very useful when implemented in the spontaneous regime as a photon pair source.

2.
Opt Lett ; 44(2): 383-386, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30644905

RESUMO

Emission at 4.6 µm was observed from an N2O filled hollow core fiber laser. 8-ns pump pulses at 1.517 µm excited a vibrational overtone resulting in lasing on an R and P branch fundamental transition from the upper pump state. At optimum gas pressure of 80 Torr, photon conversion efficiency of 9% and slope efficiency of 3% were observed from a mirrorless laser. The laser threshold occurred at absorbed pump energy of 150 nJ in a 45-cm long fiber with 85 µm core diameter. The observed dependence of the laser output on gas pressure was shown to be a result of line broadening and relaxation rates.

3.
Opt Lett ; 42(17): 3363-3366, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28957105

RESUMO

We report on the first deep-ultraviolet/ultraviolet (DUV/UV) emission using a highly compact microwave-driven plasma-core photonic crystal fiber. The latter consists of a few centimeter long micro-plasma column of a gas mixture in the core of Kagome hollow-core photonic crystal fiber. The plasma is generated by nonintrusively exciting a ternary gas mixture of argon, nitrogen, and oxygen (Ar/N2/O2) with a microwave resonator. Several spectral lines in the wavelength range of 200-450 nm were produced, guided by an Ar-N2-O2 plasma-filled fiber, and controlled by simply varying the gas ratio of this gas mixture. An optimum gas mixture ratio was experimentally and theoretically identified for the strongest emission in the DUV range of 200-275 nm. The developed DUV emitting plasma-core fiber represents an important milestone towards the development of tunable and miniaturized DUV/UV laser sources.

4.
Nat Commun ; 7: 12779, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27677451

RESUMO

Trapping or cooling molecules has rallied a long-standing effort for its impact in exploring new frontiers in physics and in finding new phase of matter for quantum technologies. Here we demonstrate a system for light-trapping molecules and stimulated Raman scattering based on optically self-nanostructured molecular hydrogen in hollow-core photonic crystal fibre. A lattice is formed by a periodic and ultra-deep potential caused by a spatially modulated Raman saturation, where Raman-active molecules are strongly localized in a one-dimensional array of nanometre-wide sections. Only these trapped molecules participate in stimulated Raman scattering, generating high-power forward and backward Stokes continuous-wave laser radiation in the Lamb-Dicke regime with sub-Doppler emission spectrum. The spectrum exhibits a central line with a sub-recoil linewidth as low as ∼14 kHz, more than five orders of magnitude narrower than conventional-Raman pressure-broadened linewidth, and sidebands comprising Mollow triplet, motional sidebands and four-wave mixing.

5.
Opt Lett ; 40(4): 605-8, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25680161

RESUMO

Continuous wave lasing of a hollow-core fiber gas laser (HOFGLAS) is achieved with molecular iodine in the 1280-1340 nm region when optically pumped at 532 nm.

6.
Opt Lett ; 39(21): 6245-8, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25361325

RESUMO

We report on the development of a hypocycloidal-core Kagome hollow-core photonic crystal fiber guiding, with low transmission loss in the 450-650 nm visible spectral range. Transmission loss records have been achieved with 70 dB/km at 600 nm, and 130 dB/km at 532 nm. As a demonstration of the fiber potential applications, we report on a compact 600 THz wide Raman comb generator, centered around 532 nm, and on a 10 W average power frequency-doubled Yb-fiber picosecond laser beam delivery, along with its use for organic material laser micro-processing.

7.
Opt Express ; 22(9): 10735-46, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24921775

RESUMO

We report on damage-free fiber-guidance of milli-Joule energy-level and 600-femtosecond laser pulses into hypocycloid core-contour Kagome hollow-core photonic crystal fibers. Up to 10 meter-long fibers were used to successfully deliver Yb-laser pulses in robustly single-mode fashion. Different pulse propagation regimes were demonstrated by simply changing the fiber dispersion and gas. Self-compression to ~50 fs, and intensity-level nearing petawatt/cm(2) were achieved. Finally, free focusing-optics laser-micromachining was also demonstrated on different materials.

8.
Opt Express ; 21(21): 25509-16, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24150390

RESUMO

We report on a self-guided microwave surface-wave induced generation of ~60 µm diameter and 6 cm-long column of argon-plasma confined in the core of a hollow-core photonic crystal fiber. At gas pressure of 1 mbar, the micro-confined plasma exhibits a stable transverse profile with a maximum gas-temperature as high as 1300 ± 200 K, and a wall-temperature as low as 500 K, and an electron density level of 10¹4 cm⁻³. The fiber guided fluorescence emission presents strong Ar⁺ spectral lines in the visible and near UV. Theory shows that the observed combination of relatively low wall-temperature and high ionisation rate in this strongly confined configuration is due to an unprecedentedly wide electrostatic space-charge field and the subsequent ion acceleration dominance in the plasma-to-gas power transfer.

9.
Opt Express ; 21(23): 28597-608, 2013 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-24514371

RESUMO

We report on numerical and experimental studies showing the influence of arc curvature on the confinement loss in hypocycloid-core Kagome hollow-core photonic crystal fiber. The results prove that with such a design the optical performances are strongly driven by the contour negative curvature of the core-cladding interface. They show that the increase in arc curvature results in a strong decrease in both the confinement loss and the optical power overlap between the core mode and the silica core-surround, including a modal content approaching true single-mode guidance. Fibers with enhanced negative curvature were then fabricated with a record loss-level of 17 dB/km at 1064 nm.

10.
Opt Express ; 21(23): 28609-16, 2013 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-24514372

RESUMO

We report on numerical and experimental studies on the influence of cladding ring-number on the confinement and bend loss in hypocycloid-shaped Kagome hollow core photonic crystal fiber. The results show that beyond the second ring, the ring number has a minor effect on confinement loss whereas the bend loss is strongly reduced with the ring-number increase. Finally, the results show that the increase in the cladding ring-number improves the modal content of the fiber.

13.
Tex Med ; 66(8): 68-9, 1970 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-5451532
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA