Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080842

RESUMO

PRMT5, a type 2 arginine methyltransferase, has a critical role in regulating cell growth and survival in cancer. With the aim of developing MTA-cooperative PRMT5 inhibitors suitable for MTAP-deficient cancers, herein we report our efforts to develop novel "MTA-cooperative" compounds identified through a high-throughput biochemical screening approach. Optimization of hits was achieved through structure-based design with a focus on improvement of oral drug-like properties. Bioisosteric replacement of the original thiazole guanidine headgroup, spirocyclization of the isoindolinone amide scaffold to both configurationally and conformationally lock the bioactive form, and fine-tuning of the potency, MTA cooperativity, and DMPK properties through specific substitutions of the azaindole headgroup were conducted. We have identified an orally available in vivo lead compound, 28 ("AZ-PRMT5i-1"), which shows sub-10 nM PRMT5 cell potency, >50-fold MTA cooperativity, suitable DMPK properties for oral dosing, and significant PRMT5-driven in vivo efficacy in several MTAP-deficient preclinical cancer models.

2.
Proc Natl Acad Sci U S A ; 120(37): e2305494120, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37669364

RESUMO

Cryoelectron microscopy (Cryo-EM) has enabled structural determination of proteins larger than about 50 kDa, including many intractable by any other method, but it has largely failed for smaller proteins. Here, we obtain structures of small proteins by binding them to a rigid molecular scaffold based on a designed protein cage, revealing atomic details at resolutions reaching 2.9 Å. We apply this system to the key cancer signaling protein KRAS (19 kDa in size), obtaining four structures of oncogenic mutational variants by cryo-EM. Importantly, a structure for the key G12C mutant bound to an inhibitor drug (AMG510) reveals significant conformational differences compared to prior data in the crystalline state. The findings highlight the promise of cryo-EM scaffolds for advancing the design of drug molecules against small therapeutic protein targets in cancer and other human diseases.


Assuntos
Diagnóstico por Imagem , Humanos , Microscopia Crioeletrônica
4.
Acta Crystallogr D Struct Biol ; 79(Pt 6): 449-461, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37259835

RESUMO

The Collaborative Computational Project No. 4 (CCP4) is a UK-led international collective with a mission to develop, test, distribute and promote software for macromolecular crystallography. The CCP4 suite is a multiplatform collection of programs brought together by familiar execution routines, a set of common libraries and graphical interfaces. The CCP4 suite has experienced several considerable changes since its last reference article, involving new infrastructure, original programs and graphical interfaces. This article, which is intended as a general literature citation for the use of the CCP4 software suite in structure determination, will guide the reader through such transformations, offering a general overview of the new features and outlining future developments. As such, it aims to highlight the individual programs that comprise the suite and to provide the latest references to them for perusal by crystallographers around the world.


Assuntos
Proteínas , Software , Proteínas/química , Cristalografia por Raios X , Substâncias Macromoleculares
5.
SLAS Discov ; 26(1): 17-31, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33016175

RESUMO

Single-particle cryogenic electron microscopy (cryo-EM) has been elevated to the mainstream of structural biology propelled by technological advancements in numerous fronts, including imaging analysis and the development of direct electron detectors. The drug discovery field has watched with (initial) skepticism and wonder at the progression of the technique and how it revolutionized the molecular understanding of previously intractable targets. This article critically assesses how cryo-EM has impacted drug discovery in diverse therapeutic areas. Targets that have been brought into the realm of structure-based drug design by cryo-EM and are thus reviewed here include membrane proteins like the GABAA receptor, several TRP channels, and G protein-coupled receptors, and multiprotein complexes like the ribosomes, the proteasome, and eIF2B. We will describe these studies highlighting the achievements, challenges, and caveats.


Assuntos
Microscopia Crioeletrônica/métodos , Descoberta de Drogas/métodos , Animais , Humanos , Relação Estrutura-Atividade
6.
Nat Commun ; 10(1): 2607, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31197133

RESUMO

Inhibiting the RAS oncogenic protein has largely been through targeting the switch regions that interact with signalling effector proteins. Here, we report designed ankyrin repeat proteins (DARPins) macromolecules that specifically inhibit the KRAS isoform by binding to an allosteric site encompassing the region around KRAS-specific residue histidine 95 at the helix α3/loop 7/helix α4 interface. We show that these DARPins specifically inhibit KRAS/effector interactions and the dependent downstream signalling pathways in cancer cells. Binding by the DARPins at that region influences KRAS/effector interactions in different ways, including KRAS nucleotide exchange and inhibiting KRAS dimerization at the plasma membrane. These results highlight the importance of targeting the α3/loop 7/α4 interface, a previously untargeted site in RAS, for specifically inhibiting KRAS function.


Assuntos
Sítio Alostérico/efeitos dos fármacos , Antineoplásicos/farmacologia , Desenho de Fármacos , Neoplasias/tratamento farmacológico , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Repetição de Anquirina , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Células HEK293 , Histidina/metabolismo , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Neoplasias/genética , Neoplasias/patologia , Biblioteca de Peptídeos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Multimerização Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais/efeitos dos fármacos
7.
MAbs ; 10(1): 104-117, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28952876

RESUMO

C5a is a potent anaphylatoxin that modulates inflammation through the C5aR1 and C5aR2 receptors. The molecular interactions between C5a-C5aR1 receptor are well defined, whereas C5a-C5aR2 receptor interactions are poorly understood. Here, we describe the generation of a human antibody, MEDI7814, that neutralizes C5a and C5adesArg binding to the C5aR1 and C5aR2 receptors, without affecting complement-mediated bacterial cell killing. Unlike other anti-C5a mAbs described, this antibody has been shown to inhibit the effects of C5a by blocking C5a binding to both C5aR1 and C5aR2 receptors. The crystal structure of the antibody in complex with human C5a reveals a discontinuous epitope of 22 amino acids. This is the first time the epitope for an antibody that blocks C5aR1 and C5aR2 receptors has been described, and this work provides a basis for molecular studies aimed at further understanding the C5a-C5aR2 receptor interaction. MEDI7814 has therapeutic potential for the treatment of acute inflammatory conditions in which both C5a receptors may mediate inflammation, such as sepsis or renal ischemia-reperfusion injury.


Assuntos
Anticorpos Monoclonais/farmacologia , Afinidade de Anticorpos , Complemento C5a/antagonistas & inibidores , Receptor da Anafilatoxina C5a/antagonistas & inibidores , Receptores de Quimiocinas/antagonistas & inibidores , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos , Sítios de Ligação de Anticorpos , Complemento C5a/química , Complemento C5a/imunologia , Complemento C5a/metabolismo , Mapeamento de Epitopos/métodos , Epitopos , Células HEK293 , Humanos , Ligação Proteica , Conformação Proteica , Engenharia de Proteínas , Receptor da Anafilatoxina C5a/química , Receptor da Anafilatoxina C5a/imunologia , Receptor da Anafilatoxina C5a/metabolismo , Receptores de Quimiocinas/química , Receptores de Quimiocinas/imunologia , Receptores de Quimiocinas/metabolismo , Relação Estrutura-Atividade
8.
SLAS Discov ; 23(1): 11-22, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28945981

RESUMO

A high-throughput screen (HTS) of human 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) resulted in several series of compounds with the potential for further optimization. Informatics was used to identify active chemotypes with lead-like profiles and remove compounds that commonly occurred as actives in other HTS screens. The activities were confirmed with IC50 measurements from two orthogonal assay technologies, and further analysis of the Hill slopes and comparison of the ratio of IC50 values at 10 times the enzyme concentration were used to identify artifact compounds. Several series of compounds were rejected as they had both high slopes and poor ratios. A small number of compounds representing the different leading series were assessed using isothermal titration calorimetry, and the X-ray crystal structure of the complex with PFKFB3 was solved. The orthogonal assay technology and isothermal calorimetry were demonstrated to be unreliable in identifying false-positive compounds in this case. Presented here is the discovery of the dihydropyrrolopyrimidinone series of compounds as active and novel inhibitors of PFKFB3, shown by X-ray crystallography to bind to the adenosine triphosphate site. The crystal structures of this series also reveal it is possible to flip the binding mode of the compounds, and the alternative orientation can be driven by a sigma-hole interaction between an aromatic chlorine atom and a backbone carbonyl oxygen. These novel inhibitors will enable studies to explore the role of PFKFB3 in driving the glycolytic phenotype of tumors.


Assuntos
Antineoplásicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , Fosfofrutoquinase-2/antagonistas & inibidores , Antineoplásicos/química , Calorimetria/métodos , Inibidores Enzimáticos/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Fosfofrutoquinase-2/química , Fosfofrutoquinase-2/genética , Fosfofrutoquinase-2/metabolismo , Relação Quantitativa Estrutura-Atividade , Bibliotecas de Moléculas Pequenas , Fluxo de Trabalho
9.
Nat Commun ; 8: 16111, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28706291

RESUMO

Ras mutations are the oncogenic drivers of many human cancers and yet there are still no approved Ras-targeted cancer therapies. Inhibition of Ras nucleotide exchange is a promising new approach but better understanding of this mechanism of action is needed. Here we describe an antibody mimetic, DARPin K27, which inhibits nucleotide exchange of Ras. K27 binds preferentially to the inactive Ras GDP form with a Kd of 4 nM and structural studies support its selectivity for inactive Ras. Intracellular expression of K27 significantly reduces the amount of active Ras, inhibits downstream signalling, in particular the levels of phosphorylated ERK, and slows the growth in soft agar of HCT116 cells. K27 is a potent, non-covalent inhibitor of nucleotide exchange, showing consistent effects across different isoforms of Ras, including wild-type and oncogenic mutant forms.


Assuntos
Anticorpos/química , Proteínas ras/antagonistas & inibidores , Repetição de Anquirina , Anticorpos/imunologia , Anticorpos/farmacologia , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Células HCT116 , Células HEK293 , Humanos , Estrutura Molecular , Terapia de Alvo Molecular , Proteínas ras/imunologia
10.
J Med Chem ; 60(8): 3438-3450, 2017 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-28376306

RESUMO

There are a number of small-molecule inhibitors targeting the RAS/RAF/MEK/ERK signaling pathway that have either been approved or are in clinical development for oncology across a range of disease indications. The inhibition of ERK1/2 is of significant current interest, as cell lines with acquired resistance to BRAF and MEK inhibitors have been shown to maintain sensitivity to ERK1/2 inhibition in preclinical models. This article reports on our recent work to identify novel, potent, and selective reversible ERK1/2 inhibitors from a low-molecular-weight, modestly active, and highly promiscuous chemical start point, compound 4. To guide and inform the evolution of this series, inhibitor binding mode information from X-ray crystal structures was critical in the rapid exploration of this template to compound 35, which was active when tested in in vivo antitumor efficacy experiments.


Assuntos
Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Animais , Disponibilidade Biológica , Linhagem Celular Tumoral , Cães , Descoberta de Drogas , Humanos , Metilação , Inibidores de Proteínas Quinases/farmacocinética
12.
Nat Chem Biol ; 12(10): 815-21, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27526030

RESUMO

The structure-specific nuclease human flap endonuclease-1 (hFEN1) plays a key role in DNA replication and repair and may be of interest as an oncology target. We present the crystal structure of inhibitor-bound hFEN1, which shows a cyclic N-hydroxyurea bound in the active site coordinated to two magnesium ions. Three such compounds had similar IC50 values but differed subtly in mode of action. One had comparable affinity for protein and protein-substrate complex and prevented reaction by binding to active site catalytic metal ions, blocking the necessary unpairing of substrate DNA. Other compounds were more competitive with substrate. Cellular thermal shift data showed that both inhibitor types engaged with hFEN1 in cells, and activation of the DNA damage response was evident upon treatment with inhibitors. However, cellular EC50 values were significantly higher than in vitro inhibition constants, and the implications of this for exploitation of hFEN1 as a drug target are discussed.


Assuntos
Inibidores Enzimáticos/farmacologia , Endonucleases Flap/antagonistas & inibidores , Endonucleases Flap/metabolismo , Domínio Catalítico/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Endonucleases Flap/química , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Temperatura
13.
ACS Med Chem Lett ; 7(5): 514-9, 2016 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-27190603

RESUMO

A novel series of covalent inhibitors of EGFR (epidermal growth factor receptor) kinase was discovered through a combination of subset screening and structure-based design. These compounds preferentially inhibit mutant forms of EGFR (activating mutant and T790M mutant) over wild-type EGFR in cellular assays measuring EGFR autophosphorylation and proliferation, suggesting an improved therapeutic index in non-small cell lung cancer patients would be achievable relative to established EGFR inhibitors. We describe our design approaches, resulting in the identification of the lead compound 5, and our efforts to develop an understanding of the structure-activity relationships within this series. In addition, strategies to overcome challenges around metabolic stability and aqueous solubility are discussed. Despite limitations in its physical properties, 5 is orally bioavailable in mice and demonstrates pronounced antitumor activity in in vivo models of mutant EGFR-driven cancers.

14.
Sci Adv ; 1(7): e1500315, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26601230

RESUMO

Helicobacter pylori is a leading cause of peptic ulceration and gastric cancer worldwide. To achieve colonization of the stomach, this Gram-negative bacterium adheres to Lewis(b) (Le(b)) antigens in the gastric mucosa using its outer membrane protein BabA. Structural information for BabA has been elusive, and thus, its molecular mechanism for recognizing Le(b) antigens remains unknown. We present the crystal structure of the extracellular domain of BabA, from H. pylori strain J99, in the absence and presence of Le(b) at 2.0- and 2.1-Å resolutions, respectively. BabA is a predominantly α-helical molecule with a markedly kinked tertiary structure containing a single, shallow Le(b) binding site at its tip within a ß-strand motif. No conformational change occurs in BabA upon binding of Le(b), which is characterized by low affinity under acidic [K D (dissociation constant) of ~227 µM] and neutral (K D of ~252 µM) conditions. Binding is mediated by a network of hydrogen bonds between Le(b) Fuc1, GlcNAc3, Fuc4, and Gal5 residues and a total of eight BabA amino acids (C189, G191, N194, N206, D233, S234, S244, and T246) through both carbonyl backbone and side-chain interactions. The structural model was validated through the generation of two BabA variants containing N206A and combined D233A/S244A substitutions, which result in a reduction and complete loss of binding affinity to Le(b), respectively. Knowledge of the molecular basis of Le(b) recognition by BabA provides a platform for the development of therapeutics targeted at inhibiting H. pylori adherence to the gastric mucosa.

15.
J Med Chem ; 58(11): 4790-801, 2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-25977981

RESUMO

The RAS/RAF/MEK/ERK signaling pathway has been targeted with a number of small molecule inhibitors in oncology clinical development across multiple disease indications. Importantly, cell lines with acquired resistance to B-RAF and MEK inhibitors have been shown to maintain sensitivity to ERK1/2 inhibition by small molecule inhibitors. There are a number of selective, noncovalent ERK1/2 inhibitors reported along with the promiscuous hypothemycin (and related analogues) that act via a covalent mechanism of action. This article reports the identification of multiple series of highly selective covalent ERK1/2 inhibitors informed by structure-based drug design (SBDD). As a starting point for these covalent inhibitors, reported ERK1/2 inhibitors and a chemical series identified via high-throughput screening were exploited. These approaches resulted in the identification of selective covalent tool compounds for potential in vitro and in vivo studies to assess the risks and or benefits of targeting this pathway through such a mechanism of action.


Assuntos
Desenho de Fármacos , Proteína Quinase 1 Ativada por Mitógeno/química , Proteína Quinase 3 Ativada por Mitógeno/química , Inibidores de Proteínas Quinases/farmacologia , Sequência de Aminoácidos , Células Cultivadas , Cristalografia por Raios X , Humanos , Immunoblotting , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
16.
J Med Chem ; 58(8): 3611-25, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25849762

RESUMO

A weak screening hit with suboptimal physicochemical properties was optimized against PFKFB3 kinase using critical structure-guided insights. The resulting compounds demonstrated high selectivity over related PFKFB isoforms and modulation of the target in a cellular context. A selected example demonstrated exposure in animals following oral dosing. Examples from this series may serve as useful probes to understand the emerging biology of this metabolic target.


Assuntos
Desenho de Fármacos , Fosfofrutoquinase-2/antagonistas & inibidores , Fosfofrutoquinase-2/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Administração Oral , Animais , Linhagem Celular , Humanos , Masculino , Camundongos , Modelos Moleculares , Fosfofrutoquinase-2/química , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacocinética , Ratos Wistar , Relação Estrutura-Atividade
17.
J Med Chem ; 58(6): 2834-44, 2015 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-25738750
18.
J Med Chem ; 58(1): 278-93, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25255283

RESUMO

Two structurally distinct series of novel, MAPK-activated kinase-2 prevention of activation inhibitors have been discovered by high throughput screening. Preliminary structure-activity relationship (SAR) studies revealed substructural features that influence the selective inhibition of the activation by p38α of the downstream kinase MK2 in preference to an alternative substrate, MSK1. Enzyme kinetics, surface plasmon resonance (SPR), 2D protein NMR, and X-ray crystallography were used to determine the binding mode and the molecular mechanism of action. The compounds bind competitively to the ATP binding site of p38α but unexpectedly with higher affinity in the p38α-MK2 complex compared with p38α alone. This observation is hypothesized to be the origin of the substrate selectivity. The two lead series identified are suitable for further investigation for their potential to treat chronic inflammatory diseases with improved tolerability over previously studied p38α inhibitors.


Assuntos
MAP Quinase Quinase 2/antagonistas & inibidores , MAP Quinase Quinase 2/química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Ligação Competitiva , Células Cultivadas , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Descoberta de Drogas , Ativação Enzimática/efeitos dos fármacos , Humanos , Cinética , MAP Quinase Quinase 2/metabolismo , Espectroscopia de Ressonância Magnética , Proteína Quinase 14 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 14 Ativada por Mitógeno/química , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Modelos Químicos , Modelos Moleculares , Estrutura Molecular , Fosforilação/efeitos dos fármacos , Ligação Proteica , Inibidores de Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas 90-kDa/química , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato , Ressonância de Plasmônio de Superfície
19.
Protein Sci ; 23(5): 627-38, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24677421

RESUMO

The EphB receptors have key roles in cell morphology, adhesion, migration and invasion, and their aberrant action has been linked with the development and progression of many different tumor types. Their conflicting expression patterns in cancer tissues, combined with their high sequence and structural identity, present interesting challenges to those seeking to develop selective therapeutic molecules targeting this large receptor family. Here, we present the first structure of the EphB1 tyrosine kinase domain determined by X-ray crystallography to 2.5Å. Our comparative crystalisation analysis of the human EphB family kinases has also yielded new crystal forms of the human EphB2 and EphB4 catalytic domains. Unable to crystallize the wild-type EphB3 kinase domain, we used rational engineering (based on our new structures of EphB1, EphB2, and EphB4) to identify a single point mutation which facilitated its crystallization and structure determination to 2.2 Å. This mutation also improved the soluble recombinant yield of this kinase within Escherichia coli, and increased both its intrinsic stability and catalytic turnover, without affecting its ligand-binding profile. The partial ordering of the activation loop in the EphB3 structure alludes to a potential cis-phosphorylation mechanism for the EphB kinases. With the kinase domain structures of all four catalytically competent human EphB receptors now determined, a picture begins to emerge of possible opportunities to produce EphB isozyme-selective kinase inhibitors for mechanistic studies and therapeutic applications.


Assuntos
Receptor EphB1/química , Receptor EphB2/química , Receptor EphB4/química , Domínio Catalítico , Cristalografia por Raios X , Humanos , Modelos Moleculares , Mutagênese , Conformação Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , Receptor EphB3/química , Receptor EphB3/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA