Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 780: 146140, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34030316

RESUMO

The introduction of temporary grassland into an annual crop rotation is recognized to improve soil ecosystem services, and resulting legacies can be beneficial for the following crops. In this context, the aim of the present study was to evaluate legacy effects of introducing temporary grassland into an annual crop rotation on five ecosystem services (i) soil structure maintenance (aggregate stability), (ii) water regulation (saturated hydraulic conductivity), (iii) biodiversity conservation (microbial biomass and microbial metabolic activity, as well as microorganism, enchytraeid, springtail and earthworm communities), (iv) pathogen regulation (soil suppressiveness to Verticillium dahliae), and (v) forage production and quality. Three crop rotation schemes, maintained for twelve years, were compared in four random blocks, one being an annual crop rotation without grassland (0%), another with a medium percentage of grassland (50%, corresponding to 3 years of continuous grassland in the crop rotation), and a third one with a high percentage of grassland in the crop rotation (75%, corresponding to 6 years of continuous grassland in the crop rotation). The results showed that the grassland introduction into an annual crop rotation improved, whatever the duration of the grassland, soil structure maintenance and biodiversity conservation, while it decreased pathogen regulation and did not modify water regulation. Comparing the two crop rotations that included grassland, indicated a stronger beneficial grassland legacy effect for the higher proportion of grassland concerning soil structure maintenance and biodiversity conservation. By contrast, water regulation, pathogen regulation and forage production were not affected by the legacy of the 75% grassland during the rotation. Overall, our findings demonstrated the extent to which grassland legacies are affecting the current state of soil properties and possible ecosystem services provided. To improve ecosystem services, soil management should take legacy effects into account and consider longer timeframes to apply beneficial practices.


Assuntos
Ecossistema , Solo , Agricultura , Ascomicetos , Biodiversidade , Produção Agrícola , Pradaria
2.
Front Plant Sci ; 9: 1751, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30559754

RESUMO

Background and Aims: Understanding interactions between water and nitrate fluxes in response to nitrate availability and transpiration rate is crucial to select more efficient plants for the use of water and nitrate. Methods: Some of these interactions were investigated in intact Brassica napus plants by combining a non-destructive gravimetric device with 15NO3 - labeling. The set-up allowed high-resolution measurement of the effects of a cross-combination of two concentrations of KNO3 or KCl (0.5 and 5 mM) with two different rates of transpiration controlled by the relative humidity during a day-night cycle. Key Results: Results show that (1) high external nitrate concentrations increased root water uptake significantly whatever the transpiration rate, (2) nitrate translocation depended both on the rate of nitrate uptake and loading into xylem (3) dilution-concentration effect of nitrate in the xylem was mainly modulated by both external nitrate availability and transpiration rate, (4) dynamic changes in 15N translocation in the xylem modified shoot growth and capacitance, and (5) variations in tissue concentrations of NO3 - induced by the experimental conditions were balanced by changes in concentrations of chloride and sulfate ions. These effects were even more amplified under low transpiration condition and 0.5 mM external nitrate concentration. Conclusion: Taken together, these results highlight the fine and rapid adjustment of anion contents, nitrate and water flows to changes in transpiration rate and nitrate availability during a day-night cycle. The use of this non-invasive gravimetric device is therefore a powerful tool to assess candidates genes involved in nitrogen and water use efficiency.

3.
J Exp Bot ; 69(16): 3975-3986, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29931373

RESUMO

In grassland plant communities, the ability of individual plants to regrow after defoliation is of crucial importance since it allows the restoration of active photosynthesis and plant growth. The aim of this study was to evaluate the effects of increasing defoliation intensity (0, 25, 65, 84, and 100% of removed leaf area) on sugar remobilization and N uptake, remobilization, and allocation in roots, adult leaves, and growing leaves of ryegrass over 2 days, using a 15N tracer technique. Increasing defoliation intensity decreased plant N uptake in a correlative way and increased plant N remobilization, but independently. The relative contribution of N stored before defoliation to leaf growth increased when defoliation intensity was severe. In most conditions, root N reserves also contributed to leaf regrowth, but much less than adult leaves and irrespective of defoliation intensity. A threshold of defoliation intensity (65% leaf area removal) was identified below which C (glucose, fructose, sucrose, fructans), and N (amino acids, soluble proteins) storage compounds were not recruited for regrowth. By contrast, nitrate content increased in elongating leaf bases above this threshold. Wounding associated with defoliation is thus not the predominant signal that triggers storage remobilization and controls the priority of resource allocation to leaf meristems. A framework integrating the sequential events leading to the refoliation of grasses is proposed on the basis of current knowledge and on the findings of the present work.


Assuntos
Metabolismo dos Carboidratos , Lolium/metabolismo , Nitrogênio/metabolismo , Folhas de Planta/metabolismo , Lolium/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento
4.
J Plant Physiol ; 171(16): 1479-90, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25105233

RESUMO

Timothy (Phleum pratense L.) is an important grass forage used for pasture, hay, and silage in regions with cool and humid growth seasons. One of the factors affecting the nutritive value of this grass is the concentration of non-structural carbohydrates (NSC), mainly represented by fructans. NSC concentration depends on multiple factors, making it hardly predictable. To provide a better understanding of NSC metabolism in timothy, the effects of maturity stage and nitrogen (N) fertilization level on biomass, NSC and N-compound concentrations were investigated in the tissues used for forage (leaf blades and stems surrounded by leaf sheaths) of hydroponically grown plants. Moreover, activities and relative expression level of enzymes involved in fructan metabolism were measured in the same tissues. Forage biomass was not altered by the fertilization level but was strongly modified by the stage of development. It increased from vegetative to heading stages while leaf-to-stem biomass ratio decreased. Total NSC concentration, which was not altered by N fertilization level, increased between heading and anthesis due to an accumulation of fructans in leaf blades. Fructan metabolizing enzyme activities (fructosyltransferase-FT and fructan exohydrolase-FEH) were not or only slightly altered by both maturity stage and N fertilization level. Conversely, the relative transcript levels of genes coding for enzymes involved in fructan metabolism were modified by N supply (PpFT1 and Pp6-FEH1) or maturity stage (PpFT2). The relative transcript level of PpFT1 was the highest in low N plants while that of Pp6-FEH1 was the highest in high N plants. Morevoer, transcript level of PpFT1 was negatively correlated with nitrate concentration while that of PpFT2 was positively correlated with sucrose concentration. This distinct regulation of the two genes coding for 6-sucrose:fructan fructosyltransferase (6-SFT) may allow a fine adequation of C allocation towards fructan synthesis in response to carbon and N availability. Contrary to fructans, starch content increased in low N plants, suggesting different regulatory mechanisms and/or sensitivity of starch and fructan metabolism in relation to the N status.


Assuntos
Fertilizantes/análise , Frutanos/metabolismo , Nitrogênio/farmacologia , Phleum/metabolismo , Relação Dose-Resposta a Droga , Glicosídeo Hidrolases/metabolismo , Hexosiltransferases/metabolismo , Phleum/crescimento & desenvolvimento , Espectrofotometria , Sacarose/metabolismo
5.
Plant Physiol Biochem ; 61: 88-96, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23085586

RESUMO

Sucrose transport between source and sink tissues is supposed to be a key-step for an efficient regrowth of perennial rye-grass after defoliation and might be altered by light conditions. We assessed the effect of different light regimes (high vs low light applied before or after defoliation) on growth, fructans and sucrose mobilization, as well as on sucrose transporter expression during 14 days of regrowth. Our results reported that defoliation led to a mobilization of C reserves (first sucrose and then fructans), which was parallel to an induction of LpSUT1 sucrose transporter expression in source and sink tissues (i.e. leaf sheaths and elongating leaf bases, respectively) irrespective to light conditions. Light regime (high or low light) had little effects on regrowth and on C reserves mobilization during the first 48 h of regrowth after defoliation. Thereafter, low light conditions, delaying the recovery of photosynthetic capacities, had a negative effect on C reserves re-accumulation (especially sucrose). Surprisingly, high light did not enhance sucrose transporter expression. Indeed, while light conditions had no effect on LpSUT1 expression, LpSUT2 transcripts levels were enhanced for low light grown plants. These results indicate that two sucrose transporter currently identified in Lolium perenne L. are differentially regulated by light and sucrose.


Assuntos
Adaptação Fisiológica/genética , Carbono/metabolismo , Luz , Lolium/fisiologia , Proteínas de Membrana Transportadoras/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Sacarose/metabolismo , Transporte Biológico , Frutanos/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Membrana Transportadoras/metabolismo , Fotossíntese , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Transcrição Gênica
6.
J Exp Bot ; 63(6): 2363-75, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22371080

RESUMO

This work assessed the central carbohydrate metabolism of actively photosynthesizing leaf blades of a C3 grass (Lolium perenne L.). The study used dynamic (13)C labelling of plants growing in continuous light with contrasting supplies of nitrogen ('low N' and 'high N') and mathematical analysis of the tracer data with a four-pool compartmental model to estimate rates of: (i) sucrose synthesis from current assimilation; (ii) sucrose export/use; (iii) sucrose hydrolysis (to glucose and fructose) and resynthesis; and (iv) fructan synthesis and sucrose resynthesis from fructan metabolism. The contents of sucrose, fructan, glucose, and fructose were almost constant in both treatments. Labelling demonstrated that all carbohydrate pools were turned over. This indicated a system in metabolic steady state with equal rates of synthesis and degradation/consumption of the individual pools. Fructan content was enhanced by nitrogen deficiency (55 and 26% of dry mass at low and high N, respectively). Sucrose content was lower in nitrogen-deficient leaves (2.7 versus 6.7%). Glucose and fructose contents were always low (<1.5%). Interconversions between sucrose, glucose, and fructose were rapid (with half-lives of individual pools ranging between 0.3 and 0.8 h). Futile cycling of sucrose through sucrose hydrolysis (67 and 56% of sucrose at low and high N, respectively) and fructan metabolism (19 and 20%, respectively) was substantial but seemed to have no detrimental effect on the relative growth rate and carbon-use efficiency of these plants. The main effect of nitrogen deficiency on carbohydrate metabolism was to increase the half-life of the fructan pool from 27 to 62 h and to effectively double its size.


Assuntos
Metabolismo dos Carboidratos/efeitos dos fármacos , Carbono/metabolismo , Frutanos/metabolismo , Lolium/metabolismo , Nitrogênio/farmacologia , Sacarose/metabolismo , Metabolismo dos Carboidratos/efeitos da radiação , Isótopos de Carbono/análise , Fertilizantes , Frutose/metabolismo , Glucose/metabolismo , Luz , Lolium/efeitos dos fármacos , Lolium/efeitos da radiação , Modelos Biológicos , Fotossíntese , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Ciclização de Substratos/efeitos dos fármacos , Ciclização de Substratos/efeitos da radiação , Fatores de Tempo
7.
Ann Bot ; 108(6): 1203-12, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21821625

RESUMO

BACKGROUND AND AIMS: The productivity and stability of grazed grassland rely on dynamic interactions between the sward and the animal. The descriptions of the sward canopies by standard 2-D representations in studies of animal-sward interactions at the bite scale need to be improved to account for the effect of local canopy heterogeneity on bite size and regrowth ability. The aim of this study was to assess a methodology of 3-D digitized canopies in order to understand the balance between bite mass and light interception by the residual sward. METHODS: 3-D canopy structures of four white clover swards were recorded using a POLHEMUS electromagnetic digitizer and adapted software (POL95). Plant components were removed after digitizing to determine aerial dry matter. Virtual canopies were synthesized and then used to derive canopy geometrical parameters, to compute directional interception and to calculate bite mass. The bit masses of cattle and sheep were simulated according to their form, depth and placement on the patch, taking account of explicit sward architecture. The resulting light interception efficiency (LIE) of each organ was then calculated using a projective method applied to the virtual residual sward. This process enabled an evaluation of light interception based on Beer's law at the bite scale. KEY RESULTS: The patterns of the vertical profiles of LAI appeared as bimodal, triangular or skewed parabolic functions. For a single bite of similar area and depth, the lowest mass was observed with half-spherical form and the highest for the cylindrical form, whatever the initial sward structure. The differences between the actual LIE and that calculated by Beer's law were marked for residual swards shorter than 8 cm. Bite mass and LIE values after grazing were more strongly affected by the initial structure of the sward than by bite form and placement. CONCLUSIONS: 3-D digitizing techniques enabled a definition of the geometry of each component in sward canopies and an accurate description of their vertical and horizontal heterogeneities. The discrepancy between Beer's law results and actual light interception was reduced when the sward regrew rapidly and if the rest period was long. Studies on the biting process would greatly benefit from this method as a framework to formulate and test hypotheses in a quantitative manner.


Assuntos
Simulação por Computador , Herbivoria , Imageamento Tridimensional/métodos , Luz , Trifolium/crescimento & desenvolvimento , Altitude , Ração Animal , Animais , Bovinos , Imageamento Tridimensional/instrumentação , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Ovinos , Trifolium/fisiologia
8.
Funct Plant Biol ; 32(4): 321-334, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-32689134

RESUMO

We studied the effects of stubble carbon / nitrogen (C / N) reserves or residual leaf area (RLA) on the contribution of taproot C / N reserves to shoot regrowth of Medicago sativa L. after cutting. The study assessed the effects of two cutting heights (6 and 15 cm), two RLAs (0 or 100%), and two initial C / N reserve levels (high N or low N) on forage production, nitrogen (N) distribution, and C / N reserve dynamics within stubble and taproot.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...