Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(12): 5652-5663, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38470330

RESUMO

Most 3d metal-based single-molecule magnets (SMMs) use N-ligands or ligands with even softer donors to impart a particular coordination geometry and increase the zero-field splitting parameter |D|, while complexes with hard O-donor ligands showing slow magnetization relaxation are rare. Here, we report that a diamagnetic NiII complex of a tetradentate ligand featuring two N-heterocyclic carbene and two alkoxide-O donors, [LO,ONi], can serve as a {O,O'}-chelating metalloligand to give a trinuclear complex [(LO,ONi)Co(LO,ONi)](OTf)2 (2) with an elongated tetrahedral {CoIIO4} core, D = -74.3 cm-1, and a spin reversal barrier Ueff = 86.9 cm-1 in the absence of an external dc field. The influence of diamagnetic NiII on the electronic structure of the {CoO4} unit in comparison to [Co(OPh)4]2- (A) has been probed with multireference ab initio calculations. These reveal a contrapolarizing effect of the NiII, which forms stronger metal-alkoxide bonds than the central CoII, inducing a change in ligand field splitting and a 5-fold increase in the magnetic anisotropy in 2 compared to A, with an easy magnetization axis along the Ni-Co-Ni vector. This demonstrates a strategy to enhance the SMM properties of 3d metal complexes with hard O-donors by modulating the ligand field character via the coordination of diamagnetic ions and the benefit of robust metalloligands in that regard.

2.
Inorg Chem ; 62(45): 18338-18356, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37913548

RESUMO

Four new pentadentate N5-donor ligands, [N-(1-methyl-2-imidazolyl)methyl-N-(2-pyridyl)-methyl-N-(bis-2-pyridylmethyl)-amine] (L1), [N-bis(1-methyl-2-imidazolyl)methyl-N-(bis-2-pyridylmethyl)amine] (L2), (N-(isoquinolin-3-ylmethyl)-1,1-di(pyridin-2-yl)-N-(pyridin-2-ylmethyl)methanamine (L3), and N,N-bis(isoquinolin-3-ylmethyl)-1,1-di(pyridin-2-yl)methanamine (L4), have been synthesized based on the N4Py ligand framework, where one or two pyridyl arms of the N4Py parent are replaced by (N-methyl)imidazolyl or N-(isoquinolin-3-ylmethyl) moieties. Using these four pentadentate ligands, the mononuclear complexes [FeII(CH3CN)(L1)]2+ (1a), [FeII(CH3CN)(L2)]2+ (2a), [FeII(CH3CN)(L3)]2+ (3a), and [FeII(CH3CN)(L4)]2+ (4a) have been synthesized and characterized. The half-wave potentials (E1/2) of the complexes become more positive in the order: 2a < 1a < 4a ≤ 3a ≤ [Fe(N4Py)(CH3CN)]2+. The order of redox potentials correlates well with the Fe-Namine distances observed by crystallography, which are 2a > 1a ≥ 4a > 3a ≥ [Fe(N4Py)(CH3CN)]2+. The corresponding ferryl complexes [FeIV(O)(L1)]2+ (1b), [FeIV(O)(L2)]2+ (2b), [FeIV(O)(L3)]2+ (3b), and [FeIV(O)(L4)]2+ (4b) were prepared by the reaction of the ferrous complexes with isopropyl 2-iodoxybenzoate (IBX ester) in acetonitrile. The greenish complexes 3b and 4b were also isolated in the solid state by the reaction of the ferrous complexes in CH3CN with ceric ammonium nitrate in water. Mössbauer spectroscopy and magnetic measurements (using superconducting quantum interference device) show that the four complexes 1b, 2b, 3b, and 4b are low-spin (S = 1) FeIV═O complexes. UV/vis spectra of the four FeIV═O complexes in acetonitrile show typical long-wavelength absorptions of around 700 nm, which are expected for FeIV═O complexes with N4Py-type ligands. The wavelengths of these absorptions decrease in the following order: 721 nm (2b) > 706 nm (1b) > 696 nm (4b) > 695 nm (3b) = 695 nm ([FeIV(O) (N4Py)]2+), indicating that the replacement of the pyridyl arms with (N-methyl) imidazolyl moieties makes L1 and L2 exert weaker ligand fields than the parent N4Py ligand, while the ligand field strengths of L3 and L4 are similar to the N4Py parent despite the replacement of the pyridyl arms with N-(isoquinolin-3-ylmethyl) moieties. Consequently, complexes 1b and 2b tend to be less stable than the parent [FeIV(O)(N4Py)]2+ complex: the half-life sequence at room temperature is 1.67 h (2b) < 16 h (1b) < 45 h (4b) < 63 h (3b) ≈ 60 h ([FeIV(O)(N4Py)]2+). Compared to the parent complex, 1b and 2b exhibit enhanced reactivity in both the oxidation of thioanisole in the oxygen atom transfer (OAT) reaction and the oxygenation of C-H bonds of aromatic and aliphatic substrates, presumed to occur via an oxygen rebound process. Furthermore, the second-order rate constants for hydrogen atom transfer (HAT) reactions affected by the ferryl complexes can be directly related to the C-H bond dissociation energies of a range of substrates that have been studied. Using either IBX ester or H2O2 as an oxidant, all four new FeII complexes display good performance in catalytic reactions involving both HAT and OAT reactions.

3.
J Am Chem Soc ; 145(33): 18477-18486, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37565682

RESUMO

The active site of nitrous oxide reductase (N2OR), a key enzyme in denitrification, features a unique µ4-sulfido-bridged tetranuclear Cu cluster (the so-called CuZ or CuZ* site). Details of the catalytic mechanism have remained under debate and, to date, synthetic model complexes of the CuZ*/CuZ sites are extremely rare due to the difficulty in building the unique {Cu4(µ4-S)} core structure. Herein, we report the synthesis and characterization of [Cu4(µ4-S)]n+ (n = 2, 2; n = 3, 3) clusters, supported by a macrocyclic {py2NHC4} ligand (py = pyridine, NHC = N-heterocyclic carbene), in both their 0-hole (2) and 1-hole (3) states, thus mimicking the two active states of the CuZ* site during enzymatic N2O reduction. Structural and electronic properties of these {Cu4(µ4-S)} clusters are elucidated by employing multiple methods, including X-ray diffraction (XRD), nuclear magnetic resonance (NMR), UV/vis, electron paramagnetic resonance (EPR), Cu/S K-edge X-ray emission spectroscopy (XES), and Cu K-edge X-ray absorption spectroscopy (XAS) in combination with time-dependent density functional theory (TD-DFT) calculations. A significant geometry change of the {Cu4(µ4-S)} core occurs upon oxidation from 2 (τ4(S) = 0.46, seesaw) to 3 (τ4(S) = 0.03, square planar), which has not been observed so far for the biological CuZ(*) site and is unprecedented for known model complexes. The single electron of the 1-hole species 3 is predominantly delocalized over two opposite Cu ions via the central S atom, mediated by a π/π superexchange pathway. Cu K-edge XAS and Cu/S K-edge XES corroborate a mixed Cu/S-based oxidation event in which the lowest unoccupied molecular orbital (LUMO) has a significant S-character. Furthermore, preliminary reactivity studies evidence a nucleophilic character of the central µ4-S in the fully reduced 0-hole state.

4.
Chem Sci ; 14(23): 6355-6374, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37325133

RESUMO

For single-ion magnets (SIMs), understanding the effects of the local coordination environment and ligand field on magnetic anisotropy is key to controlling their magnetic properties. Here we present a series of tetracoordinate cobalt(ii) complexes of the general formula [FL2Co]X2 (where FL is a bidentate diamido ligand) whose electron-withdrawing -C6F5 substituents confer stability under ambient conditions. Depending on the cations X, these complexes adopt structures with greatly varying dihedral twist angle δ between the N-Co-N' chelate planes in the solid state (48.0 to 89.2°). AC and DC field magnetic susceptibility measurements show this to translate into very different magnetic properties, the axial zero-field splitting (ZFS) parameter D ranging from -69 cm-1 to -143 cm-1 with substantial or negligible rhombic component E, respectively. A close to orthogonal arrangement of the two N,N'-chelating σ- and π-donor ligands at the Co(ii) ion is found to raise the energy barrier for magnetic relaxation to above 400 K. Multireference ab initio methods were employed to describe the complexes' electronic structures, and the results were analyzed within the framework of ab initio ligand field theory to probe the nature of the metal-ligand bonding and spin-orbit coupling. A relationship between the energy gaps of the first few electronic transitions and the ZFS was established, and the ZFS was correlated with the dihedral angle δ as well as with the metal-ligand bonding variations, viz. the two angular overlap parameters eσ and eπs. These findings not only give rise to a Co(ii) SIM showing open hysteresis up to 3.5 K at a sweep rate of 30 Oe s-1, but they also provide design guidelines for Co(ii) complexes with favorable SIM signatures or even switchable magnetic relaxation properties.

5.
JACS Au ; 3(2): 429-440, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36873706

RESUMO

A comprehensive understanding of the ligand field and its influence on the degeneracy and population of d-orbitals in a specific coordination environment are crucial for the rational design and enhancement of magnetic anisotropy of single-ion magnets (SIMs). Herein, we report the synthesis and comprehensive magnetic characterization of a highly anisotropic CoII SIM, [L2Co](TBA)2 (L is an N,N'-chelating oxanilido ligand), that is stable under ambient conditions. Dynamic magnetization measurements show that this SIM exhibits a large energy barrier to spin reversal U eff > 300 K and magnetic blocking up to 3.5 K, and the property is retained in a frozen solution. Low-temperature single-crystal synchrotron X-ray diffraction used to determine the experimental electron density gave access to Co d-orbital populations and a derived U eff, 261 cm-1, when the coupling between the d x 2 - y 2 and dxy orbitals is taken into account, in very good agreement with ab initio calculations and superconducting quantum interference device results. Powder and single-crystal polarized neutron diffraction (PNPD, PND) have been used to quantify the magnetic anisotropy via the atomic susceptibility tensor, revealing that the easy axis of magnetization is pointing along the N-Co-N' bisectors of the N,N'-chelating ligands (3.4° offset), close to the molecular axis, in good agreement with complete active space self-consistent field/N-electron valence perturbation theory to second order ab initio calculations. This study provides benchmarking for two methods, PNPD and single-crystal PND, on the same 3d SIM, and key benchmarking for current theoretical methods to determine local magnetic anisotropy parameters.

6.
Commun Chem ; 6(1): 40, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823457

RESUMO

Indolizine-carbaldehydes with the easily modifiable carbaldehyde group are important synthetic targets as versatile precursors for distinct indolizines. However, the efficient one-pot construction of trisubstituted indolizine-2-carbaldehydes represents a long-standing challenge. Herein, we report an unprecedented recyclable stereoauxiliary aminocatalytic approach via aminosugars derived from biomass, which enable the efficient one-pot synthesis of desired trisubstituted indolizine-2-carbaldehydes via [3+2] annulations of acyl pyridines and α,ß-unsaturated aldehyde. Compared to the steric shielding effect from α-anomer, a stereoauxiliary effect favored by ß-anomer of D-glucosamine is supported by control experiments. Furthermore, polymeric chitosan containing predominantly ß-D-anhydroglucosamine units also shows excellent catalytic performance in aqueous solutions for the conversion of various substrates, large-scale synthesis and catalytic cycling experiments. Thus, our approach advances the existing methodologies by providing a rich library of indolizine-2-aldehydes. In addition, it delivers an efficient protocol for a set of late-stage diversification and targeted modifications of bioactive molecules or drugs, as showcased with 1,2,3-trisubstituted indolizine-2-carbaldehydes.

7.
Chemistry ; 29(24): e202203494, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36645730

RESUMO

Using a novel tricompartmental hydrazone ligand, a set of trinuclear Dy3 complexes has been isolated and structurally characterized. Complexes Dy3 ⋅ Cl, Dy3 ⋅ Br, and Dy3 ⋅ ClO4 feature a similar overall topology but different anions (Cl- , Br- , or ClO4 - ) in combination with exogenous OH- and solvent co-ligands, which is found to translate into very different magnetic properties. Complex Dy3 ⋅ Cl shows a double relaxation process with fast quantum tunneling of the magnetization, probably related to the structural disorder of µ2 -OH- and µ2 -Cl- co-ligands. Relaxation of the magnetization is slowed down for Dy3 ⋅ Br and Dy3 ⋅ ClO4 , which do not show any structural disorder. In particular, fast quantum tunneling is suppressed in case of Dy3 ⋅ ClO4 , resulting in an energy barrier of 341 K and magnetic hysteresis up to 3.5 K; this makes Dy3 ⋅ ClO4 one of the most robust air-stable trinuclear SMMs. Magneto-structural relationships of the three complexes are analyzed and rationalized with the help of CASSCF/RASSI-SO calculations.

8.
Angew Chem Int Ed Engl ; 62(10): e202215840, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36504436

RESUMO

A flexible macrocyclic ligand with two tridentate {CNC} compartments can host two Cu ions in reversibly interconvertible states, CuI CuI (1) and mixed-valent Cu1.5 Cu1.5 (2). They were characterized by XRD and multiple spectroscopic methods, including EPR, UV/Vis absorption and MCD, in combination with TD-DFT and CASSCF calculations. 2 features a short Cu⋅⋅⋅Cu distance (≈2.5 Å; compared to ≈4.0 Šin 1) and a very high delocalization energy of 13 000 cm-1 , comparable to the mixed-valent state of the biological CuA site. Electron self-exchange between 1 and 2 is rapid despite large structural reorganization, and is proposed to proceed via a sequential mechanism involving an active conformer of 1, viz. 1'; the latter has been characterized by XRD. Such electron transfer (ET) process is reminiscent of the conformationally gated ET proposed for biological systems. This redox couple is a unique pair of flexible dicopper complexes, achieving fast electron self-exchange closely related to the function of the CuA site.

9.
Inorg Chem ; 61(35): 13944-13955, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36001121

RESUMO

Molecular systems combining light harvesting and charge storage are receiving great attention in the context of, for example, artificial photosynthesis and solar fuel generation. As part of ongoing efforts to develop new concepts for photoinduced proton-coupled electron transfer (PCET) reactivities, we report a cyclometallated iridium(III) complex [Ir(ppy)2(S-Sbpy)](PF6) ([1]PF6) equipped with our previously developed sulfurated bipyridine ligand S-Sbpy. A new one-step synthetic protocol for S-Sbpy is developed, starting from commercially available 2,2'-bipyridine, which significantly facilitates the use of this ligand. [1]+ features a two-electron reduction with potential inversion (|E1| > |E2|) at moderate potentials (E1 = -1.12, E2 = -1.11 V versus. Fc+/0 at 253 K), leading to a dithiolate species [1]-. Protonation with weak acids allows for determination of pKa = 23.5 in MeCN for the S-H···S- unit of [1H]. The driving forces for both the H atom and the hydride transfer are calculated to be ∼60 kcal mol-1 and verified experimentally by reaction with a suitable H atom and a hydride acceptor, demonstrating the ability of [1]+ to serve as a versatile PCET reagent, albeit with limited thermal stability. In MeCN solution, an orange emission for [1]PF6 from a triplet-excited state was found. Density functional calculations and ultrafast absorption spectroscopy are used to give insight into the excited-state dynamics of the complex and suggest a significantly stretched S-S bond for the lowest triplet-state T1. The structural responsiveness of the disulfide unit is proposed to open an effective relaxation channel toward the ground state, explaining the unexpectedly short lifetime of [1]+. These insights as well as the quantitative ground-state thermochemistry data provide valuable information for the use of S-Sbpy-functionalized complexes and their disulfide-/dithiol-directed PCET reactivity.


Assuntos
Compostos Heterocíclicos , Irídio , Dissulfetos , Irídio/química , Ligantes , Luminescência , Prótons
11.
JACS Au ; 2(5): 1134-1143, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35647586

RESUMO

A unique type of Cu2/O2 adduct with orthogonal (close to 90°) Cu-O-O-Cu arrangement has been proposed for initial stages of O2 binding at biological type III dicopper sites, and targeted ligand design has now allowed us to emulate such an adduct in a pyrazolate-based µ-η1 :η1-peroxodicopper(II) complex (2) with Cu-O-O-Cu torsion φ of 87°, coined ⊥ P intermediate. Full characterization of 2, including X-ray diffraction (d O-O = 1.452 Å) and Raman spectroscopy (ν̃O-O = 807 cm-1), completes a series of closely related Cu2/O2 intermediates featuring µ-η1 :η1-peroxodicopper(II) cores with φ ranging from 55° (A, cis-peroxo C P; Brinkmeier A.et al., J. Am. Chem. Soc.2021, 143, 10361) via 87° (2, ⊥ P type) up to 104° (B, approaching trans-peroxo T P; Kindermann N.et al., Angew. Chem., Int. Ed.2015, 54, 1738). SQUID magnetometry revealed ferromagnetic interaction of the CuII ions and a triplet (S t = 1) ground state in 2. Frequency-domain THz-EPR has been employed to quantitatively investigate the spin systems of 2 and B. Magnetic transitions within the triplet ground states confirmed their substantial zero-field splittings (ZFS) suggested by magnetometry. Formally forbidden triplet-to-singlet transitions at 56 (2) and 157 cm-1 (B), which are in agreement with the exchange coupling strengths J iso inferred from SQUID data, are reported for the first time for coupled dicopper(II) complexes. Rigorous analysis by spin-Hamiltonian-based simulations attributed the corresponding nonzero transition probabilities and the ZFS to substantial antisymmetric (Dzyaloshinskii-Moriya) exchange d and provided robust values and orientations for the d , J , and g tensors. These interactions can be correlated with the Cu-O-O-Cu geometries, revealing a linear increase of J iso with the Cu-O-O-Cu torsion and a strong linear decrease with the Cu-O-O angle. Relevance of the ⊥ P intermediate for O2 activation at type III dicopper sites and a potential role of antisymmetric exchange in the concomitant intersystem crossing are proposed.

12.
Inorg Chem ; 61(18): 7153-7164, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35475617

RESUMO

Iron complexes with nitrido ligands are of interest as molecular analogues of key intermediates during N2-to-NH3 conversion in industrial or enzymatic processes. Dinuclear iron complexes with a bridging nitrido unit are mostly known in relatively high oxidation states (III/IV or IV/IV), originating from the decomposition of azidoiron precursors via high-valent Fe≡N intermediates. The use of a tetra-NHC macrocyclic scaffold ligand (NHC = N-heterocyclic carbene) has now allowed for the isolation of a series of organometallic µ-nitridodiiron complexes ranging from the mid-valent FeIII-N-FeIII (1) via mixed-valent FeIII-N-FeIV (type 4) to the high-valent FeIV-N-FeIV (type 5) species that are interconverted at moderate potentials, accompanied by axial ligand binding at the FeIV sites. Magnetic measurements and electron paramagnetic resonance spectroscopy showed the homovalent complexes to be diamagnetic and the mixed-valent system to feature an S = 1/2 ground state due to very strong antiferromagnetic coupling. The bonding in the Fe-N-Fe moiety has been further probed by crystallographic structure determination, 57Fe Mössbauer and UV-vis spectroscopies, as well as density functional theory computations, which revealed high covalency and nearly identical Fe-N distances across this redox series. The latter has been rationalized in terms of the nonbonding nature of the combination of Fe dz2 atomic orbitals from which electrons are successively removed upon oxidation, and these redox processes are best described as being metal-centered. The tetra-NHC-ligated µ-nitridodiiron series complements a set of related complexes with single-atom µ-oxido and µ-phosphido bridges, but the Fe-N-Fe core exhibits a comparatively high stability over several oxidation states. This promises interesting applications in view of the manifold catalytic uses of µ-nitridodiiron complexes based on macrocyclic N-donor porphinato(2-) or phthalocyaninato(2-) ligands.


Assuntos
Compostos Férricos , Ferro , Elétrons , Compostos Férricos/química , Ferro/química , Ligantes , Oxirredução
13.
Chemistry ; 28(29): e202200648, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35319128

RESUMO

The targeted cleavage of the C-N bonds of alkyl primary amines in sustainable compounds of biomass according to a metal-free pathway and the conjunction of nitrogen in the synthesis of imidazo[1,5-a]pyridines are still highly challenging. Despite tremendous progress in the synthesis of imidazo[1,5-a]pyridines over the past decade, many of them can still not be efficiently prepared. Herein, we report an anomeric stereoauxiliary approach for the synthesis of a wide range of imidazo[1,5-a]pyridines after cleaving the C-N bond of d-glucosamine (α-2° amine) from biobased resources. This new approach expands the scope of readily accessible imidazo[1,5-a]pyridines relative to existing state-of-the-art methods. A key strategic advantage of this approach is that the α-anomer of d-glucosamine enables C-N bond cleavage via a seven-membered ring transition state. By using this novel method, a series of imidazo[1,5-a]pyridine derivatives (>80 examples) was synthesized from pyridine ketones (including para-dipyridine ketone) and aldehydes (including para-dialdehyde). Imidazo[1,5-a]pyridine derivatives containing diverse important deuterated C(sp2 )-H and C(sp3 )-H bonds were also efficiently achieved.


Assuntos
Glucosamina , Imidazóis , Aldeídos/química , Aminas , Imidazóis/química , Cetonas/química , Piridinas/química
14.
J Am Chem Soc ; 144(6): 2520-2534, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35050605

RESUMO

A series of organometallic copper complexes in formal oxidation states ranging from +1 to +3 have been characterized by a combination of Cu K-edge X-ray absorption (XAS) and Cu Kß valence-to-core X-ray emission spectroscopies (VtC XES). Each formal oxidation state exhibits distinctly different XAS and VtC XES transition energies due to the differences in the Cu Zeff, concomitant with changes in physical oxidation state from +1 to +2 to +3. Herein, we demonstrate the sensitivity of XAS and VtC XES to the physical oxidation states of a series of N-heterocyclic carbene (NHC) ligated organocopper complexes. We then extend these methods to the study of the [Cu(CF3)4]- ion. Complemented by computational methods, the observed spectral transitions are correlated with the electronic structure of the complexes and the Cu Zeff. These calculations demonstrate that a contraction of the Cu 1s orbitals to deeper binding energy upon oxidation of the Cu center manifests spectroscopically as a stepped increase in the energy of both XAS and Kß2,5 emission features with increasing formal oxidation state within the [Cun+(NHC2)]n+ series. The newly synthesized Cu(III) cation [CuIII(NHC4)]3+ exhibits spectroscopic features and an electronic structure remarkably similar to [Cu(CF3)4]-, supporting a physical oxidation state assignment of low-spin d8 Cu(III) for [Cu(CF3)4]-. Combining XAS and VtC XES further demonstrates the necessity of combining multiple spectroscopies when investigating the electronic structures of highly covalent copper complexes, providing a template for future investigations into both synthetic and biological metal centers.

15.
J Magn Reson ; 333: 107091, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34749036

RESUMO

Pulsed 19F ENDOR spectroscopy provides a selective method for measuring angstrom to nanometer distances in structural biology. Here, the performance of 19F ENDOR at fields of 3.4 T and 9.4 T is compared using model compounds containing one to three 19F atoms. CF3 groups are included in two compounds, for which the possible occurrence of uniaxial rotation might affect the distance distribution. At 9.4 T, pronounced asymmetric features are observed in many of the presented 19F ENDOR spectra. Data analysis by spectral simulations shows that these features arise from the chemical shift anisotropy (CSA) of the 19F nuclei. This asymmetry is also observed at 3.4 T, albeit to a much smaller extent, confirming the physical origin of the effect. The CSA parameters are well consistent with DFT predicted values and can be extracted from simulation of the experimental data in favourable cases, thereby providing additional information about the geometrical and electronic structure of the spin system. The feasibility of resolving the CSA at 9.4 T provides important information for the interpretation of line broadening in ENDOR spectra also at lower fields, which is relevant for developing methods to extract distance distributions from 19F ENDOR spectra.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica , Anisotropia , Simulação por Computador
16.
Dalton Trans ; 50(47): 17573-17582, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34806736

RESUMO

Targeted approaches for manipulating the coordination geometry of lanthanide ions are a promising way to synthesize high-performance single-molecule magnets (SMMs), but most of the successful examples reported to date focus on mononuclear complexes. Herein, we describe a strategy to assemble dinuclear SMMs with DyIII ions in approximate D5h coordination geometry based on pyrazolate-based macrocyclic ligands with two binding sites. A Dy4 complex with a rhomb-like arrangement of four DyIII as well as two dinuclear complexes having axial chlorido ligands (Dy2·Cl and Dy2*·Cl) were obtained; in the latter case, substituting Cl- by SCN- gave Dy2·SCN. Magneto-structural studies revealed that the µ-OH bridges with short Dy-O bonds dominate the magnetic anisotropy of the DyIII ions in centrosymmetric Dy4 to give a vortex type diamagnetic ground state. Dynamic magnetic studies of Dy4 identified two relaxation processes under zero field, one of which is suppressed after applying a dc field. For complexes Dy2·Cl and Dy2*·Cl, the DyIII ions feature almost perfect D5h environment, but both complexes only behave as field-induced SMMs (Ueff = 19 and 25 K) due to the weak axial Cl- donors. In Dy2·SCN additional MeOH coordination leads to a distorted D2d geometry of the DyIII ions, yet SMMs properties at zero field are observed due to the relatively strong axial ligand field provided by SCN- (Ueff = 43 K). Further elaboration of preorganizing macrocyclic ligands appears to be a promising strategy for imposing a desired coordination geometry with parallel orientation of the anisotropy axes of proximate DyIII ions in a targeted approach.

17.
J Am Chem Soc ; 143(42): 17751-17760, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34658244

RESUMO

The properties of metal/dioxygen species, which are key intermediates in oxidation catalysis, can be modulated by interaction with redox-inactive Lewis acids, but structural information about these adducts is scarce. Here we demonstrate that even mildly Lewis acidic alkali metal ions, which are typically viewed as innocent "spectators", bind strongly to a reactive cis-peroxo dicopper(II) intermediate. Unprecedented structural insight has now been obtained from X-ray crystallographic characterization of the "bare" CuII2(µ-η1:η1-O2) motif and its Li+, Na+, and K+ complexes. UV-vis, Raman, and electrochemical studies show that the binding persists in MeCN solution, growing stronger in proportion to the cation's Lewis acidity. The affinity for Li+ is surprisingly high (∼70 × 104 M-1), leading to Li+ extraction from its crown ether complex. Computational analysis indicates that the alkali ions influence the entire Cu-OO-Cu core, modulating the degree of charge transfer from copper to dioxygen. This induces significant changes in the electronic, magnetic, and electrochemical signatures of the Cu2O2 species. These findings have far-reaching implications for analyses of transient metal/dioxygen intermediates, which are often studied in situ, and they may be relevant to many (bio)chemical oxidation processes when considering the widespread presence of alkali cations in synthetic and natural environments.

18.
J Am Chem Soc ; 143(27): 10361-10366, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34191490

RESUMO

Superoxo complexes of copper are primary adducts in several O2-activating Cu-containing metalloenzymes as well as in other Cu-mediated oxidation and oxygenation reactions. Because of their intrinsically high reactivity, however, isolation of Cux(O2•-) species is challenging. Recent work (J. Am. Chem. Soc. 2017, 139, 9831; 2019, 141, 12682) established fundamental thermochemical data for the H atom abstraction reactivity of dicopper(II) superoxo complexes, but structural characterization of these important intermediates was so far lacking. Here we report the first crystallographic structure determination of a superoxo dicopper(II) species (3) together with the structure of its 1e- reduced peroxo congener (2; a rare cis-µ-1,2-peroxo dicopper(II) complex). Interconversion of 2 and 3 occurs at low potential (-0.58 V vs Fc/Fc+) and is reversible both chemically and electrochemically. Comparison of metric parameters (d(O-O) = 1.441(2) Å for 2 vs 1.329(7) Å for 3) and of spectroscopic signatures (ν̃(16O-16O) = 793 cm-1 for 2 vs 1073 cm-1 for 3) reflects that the redox process occurs at the bridging O2-derived unit. The CuII-O2•--CuII complex has an S = 1/2 spin ground state according to magnetic and EPR data, in agreement with density functional theory calculations. Computations further show that the potential associated with changes of the Cu-O-O-Cu dihedral angle is shallow for both 2 and 3. These findings provide a structural basis for the low reorganization energy of the kinetically facile 1e- interconversion of µ-1,2-superoxo/peroxo dicopper(II) couples, and they open the door for comprehensive studies of these key intermediates in Cux/O2 chemistry.

19.
Angew Chem Int Ed Engl ; 60(26): 14480-14487, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-33829680

RESUMO

Using a pyrazolate-bridged dinucleating ligand that provides two proximate pincer-type PNN binding sites ("two-in-one pincer"), different synthetic routes have been developed towards its dicobalt(I) complex 2 that features a twice deprotonated ligand backbone and two weakly activated terminal N2 substrate ligands directed into the bimetallic pocket. Protonation of 2 is shown to occur at the ligand scaffold and to trigger conversion to a tetracobalt(I) complex 4 with two end-on µ1,2 -bridging N2 ; in THF 4 is labile and undergoes temperature-dependent N2 /triflate ligand exchange. These pyrazolate-based systems combine the potential of exhibiting both metal-metal and metal-ligand cooperativity, viz. two concepts that have emerged as promising design motifs for molecular N2 fixation catalysts. Complex 2 serves as an efficient (pre)catalyst for the reductive silylation of N2 into N(SiMe3 )3 (using KC8 and Me3 SiCl), yielding up to 240 equiv N(SiMe3 )3 per catalyst.

20.
J Am Chem Soc ; 143(16): 6238-6247, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33861085

RESUMO

The transfer of multiple electrons and protons is of crucial importance in many reactions relevant in biology and chemistry. Natural redox-active cofactors are capable of storing and releasing electrons and protons under relatively mild conditions and thus serve as blueprints for synthetic proton-coupled electron transfer (PCET) reagents. Inspired by the prominence of the 2e-/2H+ disulfide/dithiol couple in biology, we investigate herein the diverse PCET reactivity of a Re complex equipped with a bipyridine ligand featuring a unique SH···-S moiety in the backbone. The disulfide bond in fac-[Re(S-Sbpy)(CO)3Cl] (1, S-Sbpy = [1,2]dithiino[4,3-b:5,6-b']dipyridine) undergoes two successive reductions at equal potentials of -1.16 V vs Fc+|0 at room temperature forming [Re(S2bpy)(CO)3Cl]2- (12-, S2bpy = [2,2'-bipyridine]-3,3'-bis(thiolate)). 12- has two adjacent thiolate functions at the bpy periphery, which can be protonated forming the S-H···-S unit, 1H-. The disulfide/dithiol switch exhibits a rich PCET reactivity and can release a proton (ΔG°H+ = 34 kcal mol-1, pKa = 24.7), an H atom (ΔG°H• = 59 kcal mol-1), or a hydride ion (ΔG°H- = 60 kcal mol-1) as demonstrated in the reactivity with various organic test substrates.


Assuntos
Complexos de Coordenação/química , Dissulfetos/química , Rênio/química , Tolueno/análogos & derivados , Complexos de Coordenação/síntese química , Transporte de Elétrons , Hidrogênio/química , Cinética , Conformação Molecular , Oxirredução , Prótons , Termodinâmica , Tolueno/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...