Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Med Rep ; 29(6)2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38639174

RESUMO

Macrophage­inducible C­type lectin receptor (Mincle) is predominantly found on antigen­presenting cells. It can recognize specific ligands when stimulated by certain pathogens such as fungi and Mycobacterium tuberculosis. This recognition triggers the activation of the nuclear factor­κB pathway, leading to the production of inflammatory factors and contributing to the innate immune response of the host. Moreover, Mincle identifies lipid damage­related molecules discharged by injured cells, such as Sin3­associated protein 130, which triggers aseptic inflammation and ultimately hastens the advancement of renal damage, autoimmune disorders and malignancies by fostering tissue inflammation. Presently, research on the functioning of the Mincle receptor in different inflammatory and fibrosis­associated conditions has emerged as a popular topic. Nevertheless, there remains a lack of research on the impact of Mincle in promoting long­lasting inflammatory reactions and fibrosis. Additional investigation is required into the function of Mincle receptors in chronological inflammatory reactions and fibrosis of organ systems, including the progression from inflammation to fibrosis. Hence, the present study showed an overview of the primary roles and potential mechanism of Mincle in inflammation, fibrosis, as well as the progression of inflammation to fibrosis. The aim of the present study was to clarify the potential mechanism of Mincle in inflammation and fibrosis and to offer perspectives for the development of drugs that target Mincle.


Assuntos
Inflamação , Mycobacterium tuberculosis , Animais , Camundongos , Inflamação/metabolismo , Imunidade Inata , Mycobacterium tuberculosis/metabolismo , NF-kappa B , Fibrose , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Camundongos Endogâmicos C57BL
2.
Sci Rep ; 14(1): 9441, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658734

RESUMO

Peripheral blood is an alternative source of stem/progenitor cells for regenerative medicine owing to its ease of retrieval and blood bank storage. Previous in vitro studies indicated that the conditioned medium derived from peripheral blood mononuclear cells (PBMCs) treated with the iron-quercetin complex (IronQ) contains potent angiogenesis and wound-healing properties. This study aims to unveil the intricate regulatory mechanisms governing the effects of IronQ on the transcriptome profiles of human PBMCs from healthy volunteers and those with diabetes mellitus (DM) using RNA sequencing analysis. Our findings revealed 3741 and 2204 differentially expressed genes (DEGs) when treating healthy and DM PBMCs with IronQ, respectively. Functional enrichment analyses underscored the biological processes shared by the DEGs in both conditions, including inflammatory responses, cell migration, cellular stress responses, and angiogenesis. A comprehensive exploration of these molecular alterations exposed a network of 20 hub genes essential in response to stimuli, cell migration, immune processes, and the mitogen-activated protein kinase (MAPK) pathway. The activation of these pathways enabled PBMCs to potentiate angiogenesis and tissue repair. Corroborating this, quantitative real-time polymerase chain reaction (qRT-PCR) and cell phenotyping confirmed the upregulation of candidate genes associated with anti-inflammatory, pro-angiogenesis, and tissue repair processes in IronQ-treated PBMCs. In summary, combining IronQ and PBMCs brings about substantial shifts in gene expression profiles and activates pathways that are crucial for tissue repair and immune response, which is promising for the enhancement of the therapeutic potential of PBMCs, especially in diabetic wound healing.


Assuntos
Diabetes Mellitus , Voluntários Saudáveis , Ferro , Leucócitos Mononucleares , Quercetina , Transcriptoma , Humanos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Quercetina/farmacologia , Transcriptoma/efeitos dos fármacos , Ferro/metabolismo , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Perfilação da Expressão Gênica , Masculino , Feminino , Adulto
3.
J Inflamm Res ; 17: 1643-1658, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38504697

RESUMO

Background: Intracerebral hemorrhage (ICH), a devastating form of stroke, is characterized by elevated morbidity and mortality rates. Neuroinflammation is a common occurrence following ICH. Mesenchymal stem cells (MSCs) have exhibited potential in treating brain diseases due to their anti-inflammatory properties. However, the therapeutic efficacy of MSCs is limited by the intense inflammatory response at the transplantation site in ICH. Hence, enhancing the function of transplanted MSCs holds considerable promise as a therapeutic strategy for ICH. Notably, the iron-quercetin complex (IronQ), a metal-quercetin complex synthesized through coordination chemistry, has garnered significant attention for its biomedical applications. In our previous studies, we have observed that IronQ exerts stimulatory effects on cell growth, notably enhancing the survival and viability of peripheral blood mononuclear cells (PBMCs) and MSCs. This study aimed to evaluate the effects of pretreated MSCs with IronQ on neuroinflammation and elucidate its underlying mechanisms. Methods: The ICH mice were induced by injecting the collagenase I solution into the right brain caudate nucleus. After 24 hours, the ICH mice were randomly divided into four subgroups, the model group (Model), quercetin group (Quercetin), MSCs group (MSCs), and pretreated MSCs with IronQ group (MSCs+IronQ). Neurological deficits were re-evaluated on day 3, and brain samples were collected for further analysis. TUNEL staining was performed to assess cell DNA damage, and the protein expression levels of inflammatory factors and the cGAS-STING signaling pathway were investigated and analyzed. Results: Pretreated MSCs with IronQ effectively mitigate neurological deficits and reduce neuronal inflammation by modulating the microglial polarization. Moreover, the pretreated MSCs with IronQ suppress the protein expression levels of the cGAS-STING signaling pathway. Conclusion: These findings suggest that pretreated MSCs with IronQ demonstrate a synergistic effect in alleviating neuroinflammation, thereby improving neurological function, which is achieved through the inhibition of the cGAS-STING signaling pathway.

4.
Pharmaceuticals (Basel) ; 16(9)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37765000

RESUMO

Combining phytochemicals with chemotherapeutic drugs has demonstrated the potential to surmount drug resistance. In this paper, we explore the efficacy of pentagalloyl glucose (PGG) in modulating P-gp and reversing multidrug resistance (MDR) in drug-resistant leukemic cells (K562/ADR). The cytotoxicity of PGG was evaluated using a CCK-8 assay, and cell apoptosis was assessed using flow cytometry. Western blotting was used to analyze protein expression levels. P-glycoprotein (P-gp) activity was evaluated by monitoring the kinetics of P-gp-mediated efflux of pirarubicin (THP). Finally, molecular docking, molecular dynamics simulation, and molecular mechanics with generalized Born and surface area solvation (MM-GBSA) calculation were conducted to investigate drug-protein interactions. We found that PGG selectively induced cytotoxicity in K562/ADR cells and enhanced sensitivity to doxorubicin (DOX), indicating its potential as a reversal agent. PGG reduced the expression of P-gp and its gene transcript levels. Additionally, PGG inhibited P-gp-mediated efflux and increased intracellular drug accumulation in drug-resistant cells. Molecular dynamics simulations and MM-GBSA calculation provided insights into the binding affinity of PGG to P-gp, suggesting that PGG binds tightly to both the substrate and the ATP binding sites of P-gp. These findings support the potential of PGG to target P-gp, reverse drug resistance, and enhance the efficacy of anticancer therapies.

5.
Molecules ; 28(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37375411

RESUMO

Pentagalloyl glucose (PGG) is a natural hydrolyzable gallotannin abundant in various plants and herbs. It has a broad range of biological activities, specifically anticancer activities, and numerous molecular targets. Despite multiple studies available on the pharmacological action of PGG, the molecular mechanisms underlying the anticancer effects of PGG are unclear. Here, we have critically reviewed the natural sources of PGG, its anticancer properties, and underlying mechanisms of action. We found that multiple natural sources of PGG are available, and the existing production technology is sufficient to produce large quantities of the required product. Three plants (or their parts) with maximum PGG content were Rhus chinensis Mill, Bouea macrophylla seed, and Mangifera indica kernel. PGG acts on multiple molecular targets and signaling pathways associated with the hallmarks of cancer to inhibit growth, angiogenesis, and metastasis of several cancers. Moreover, PGG can enhance the efficacy of chemotherapy and radiotherapy by modulating various cancer-associated pathways. Therefore, PGG can be used for treating different human cancers; nevertheless, the data on the pharmacokinetics and safety profile of PGG are limited, and further studies are essential to define the clinical use of PGG in cancer therapies.


Assuntos
Glucose , Taninos Hidrolisáveis , Humanos , Taninos Hidrolisáveis/farmacologia , Taninos Hidrolisáveis/metabolismo
6.
Stem Cell Res Ther ; 14(1): 131, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37189208

RESUMO

BACKGROUND: Intracerebral hemorrhage (ICH) is a severe brain-injured disease accompanied by cerebral edema, inflammation, and subsequent neurological deficits. Mesenchymal stem cells (MSCs) transplantation has been used as a neuroprotective therapy in nervous system diseases because of its anti-inflammatory effect. Nevertheless, the biological characteristics of transplanted MSCs, including the survival rate, viability, and effectiveness, are restricted because of the severe inflammatory response after ICH. Therefore, improving the survival and viability of MSCs will provide a hopeful therapeutic efficacy for ICH. Notably, the biomedical applications of coordination chemistry-mediated metal-quercetin complex have been verified positively and studied extensively, including growth-promoting and imaging probes. Previous studies have shown that the iron-quercetin complex (IronQ) possesses extraordinary dual capabilities with a stimulating agent for cell growth and an imaging probe by magnetic resonance imaging (MRI). Therefore, we hypothesized that IronQ could improve the survival and viability of MSCs, displaying the anti-inflammation function in the treatment of ICH while also labeling MSCs for their tracking by MRI. This study aimed to explore the effects of MSCs with IronQ in regulating inflammation and further clarify their potential mechanisms. METHODS: C57BL/6 male mice were utilized in this research. A collagenase I-induced ICH mice model was established and randomly separated into the model group (Model), quercetin gavage group (Quercetin), MSCs transplantation group (MSCs), and MSCs transplantation combined with IronQ group (MSCs + IronQ) after 24 h. Then, the neurological deficits score, brain water content (BWC), and protein expression, such as TNF-α, IL-6, NeuN, MBP, as well as GFAP, were investigated. We further measured the protein expression of Mincle and its downstream targets. Furthermore, the lipopolysaccharide (LPS)-induced BV2 cells were utilized to investigate the neuroprotection of conditioned medium of MSCs co-cultured with IronQ in vitro. RESULTS: We found that the combined treatment of MSCs with IronQ improved the inflammation-induced neurological deficits and BWC in vivo by inhibiting the Mincle/syk signaling pathway. Conditioned medium derived from MSCs co-cultured with IronQ decreased inflammation, Mincle, and its downstream targets in the LPS-induced BV2 cell line. CONCLUSIONS: These data suggested that the combined treatment exerts a collaborative effect in alleviating ICH-induced inflammatory response through the downregulation of the Mincle/syk signaling pathway following ICH, further improving the neurologic deficits and brain edema.


Assuntos
Edema Encefálico , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Ratos , Camundongos , Animais , Masculino , Ratos Sprague-Dawley , Quercetina/efeitos adversos , Meios de Cultivo Condicionados/metabolismo , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Hemorragia Cerebral , Transdução de Sinais , Inflamação/terapia , Inflamação/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo
7.
Stem Cell Rev Rep ; 19(5): 1214-1231, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37058201

RESUMO

Mesenchymal stem cells (MSCs) are regarded as highly promising cells for allogeneic cell therapy, owing to their multipotent nature and ability to display potent and varied functions in different diseases. The functions of MSCs, including native immunomodulation, high self-renewal characteristic, and secretory and trophic properties, can be employed to improve the immune-modulatory functions in diseases. MSCs impact most immune cells by directly contacting and/or secreting positive microenvironmental factors to influence them. Previous studies have reported that the immunomodulatory role of MSCs is basically dependent on their secretion ability from MSCs. This review discusses the immunomodulatory capabilities of MSCs and the promising strategies to successfully improve the potential utilization of MSCs in clinical research.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Imunomodulação
8.
Regen Ther ; 22: 181-190, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36860266

RESUMO

Intracerebral hemorrhage (ICH) is the second largest type of stroke with high mortality and morbidity. The vast majority of survivors suffer from serious neurological defects. Despite the well-established etiology and diagnose, there is still some controversy over the ideal treatment strategy. MSC-based therapy has become an attractive and promising strategy for the treatment of ICH through immune regulation and tissue regeneration. However, accumulating studies have revealed that MSC-based therapeutic effects are mainly attributed to the paracrine properties of MSC, especially small extracellular vesicles/exosome (EVs/exo) which are considered to be the key mediators of the protective efficacy from MSCs. Moreover, some papers reported that MSC-EVs/exo have better therapeutic effects than MSCs. Therefore, EVs/exo has become a new choice for the treatment of ICH stroke in recent years. In this review, we mainly concentrate on the current research progress on the use of MSC-EVs/exo in the treatment of ICH and the existing challenges in their transplation from lab to clinical practice.

9.
Front Mol Neurosci ; 15: 1013706, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304999

RESUMO

Microglia are the resident immune cells of the central nervous system (CNS) and play a key role in neurological diseases, including intracerebral hemorrhage (ICH). Microglia are activated to acquire either pro-inflammatory or anti-inflammatory phenotypes. After the onset of ICH, pro-inflammatory mediators produced by microglia at the early stages serve as a crucial character in neuroinflammation. Conversely, switching the microglial shift to an anti-inflammatory phenotype could alleviate inflammatory response and incite recovery. This review will elucidate the dynamic profiles of microglia phenotypes and their available shift following ICH. This study can facilitate an understanding of the self-regulatory functions of the immune system involving the shift of microglia phenotypes in ICH. Moreover, suggestions for future preclinical and clinical research and potential intervention strategies are discussed.

10.
Nanomaterials (Basel) ; 12(16)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36014641

RESUMO

The theranostic agent iron-quercetin complex (IronQ) provides a T1-positive magnetic resonance imaging (MRI) contrast agent. The magnetically IronQ-labeled cells can be used for cell tracking and have active biological applications in promoting cell and tissue regeneration. However, a detailed investigation of IronQ's cytotoxicity and genotoxicity is necessary. Thus, this study aimed to evaluate the possibility of IronQ inducing cytotoxicity and genotoxicity in peripheral blood mononuclear cells (PBMCs). We evaluated the vitality of cells, the production of reactive oxygen species (ROS), the level of antioxidant enzymes, and the stability of the genetic material in PBMCs treated with IronQ. The results show that IronQ had a negligible impact on toxicological parameters such as ROS production and lipid peroxidation, indicating that it is not harmful. IronQ-labeled PMBCs experienced an insignificant depletion of antioxidant enzyme levels at the highest concentration of IronQ. There is no evident genotoxicity in the magnetically IronQ-labeled PBMCs. The results show that IronQ does not potentiate the cytotoxicity and genotoxicity effects of the labeled PMBCs and might be safe for therapeutic and cell tracking purposes. These results could provide a reference guideline for the toxicological analysis of IronQ in in vivo studies.

11.
Pharmaceuticals (Basel) ; 15(7)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35890129

RESUMO

Although cisplatin is a first-line chemotherapy drug for head and neck squamous cell carcinoma (HNSCC), its therapeutic efficacy is limited owing to serious side effects and acquired drug resistance. This study determined whether combining pentagalloyl glucose (PGG) and cisplatin enhanced their anti-tumor activities on HNSCC cell lines. We investigated the anticancer effect of PGG combined with cisplatin in 2D and 3D multicellular spheroid cell culture. The results revealed that PGG combined with cisplatin inhibited cell viability and produced synergistic effects. PGG potentiates the anticancer effect of cisplatin by promoting apoptosis and inhibiting cell migration. The western blot and molecular docking analysis revealed that the synergistic effect of the combination treatment may be related to the PGG-mediated reduced expression of phosphorylated STAT3 and phosphorylated Akt. Furthermore, we found that the combined treatment of PGG and cisplatin's effect on 3D multicellular spheroid size was more potent than the monotherapies. Our findings indicated that the combination therapy of PGG and cisplatin synergistically inhibited HNSCC cancer cell viability and induced apoptosis in 2D and 3D models. The present results suggested that PGG may be a promising adjunct drug used with cisplatin for a practical therapeutic approach to head and neck cancer.

12.
Front Cell Neurosci ; 16: 898497, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769327

RESUMO

Intracerebral hemorrhage (ICH), a common lethal subtype of stroke accounting for nearly 10-15% of the total stroke disease and affecting two million people worldwide, has a high mortality and disability rate and, thus, a major socioeconomic burden. However, there is no effective treatment available currently. The role of mesenchymal stem cells (MSCs) in regenerative medicine is well known owing to the simplicity of acquisition from various sources, low immunogenicity, adaptation to the autogenic and allogeneic systems, immunomodulation, self-recovery by secreting extracellular vesicles (EVs), regenerative repair, and antioxidative stress. MSC therapy provides an increasingly attractive therapeutic approach for ICH. Recently, the functions of MSCs such as neuroprotection, anti-inflammation, and improvement in synaptic plasticity have been widely researched in human and rodent models of ICH. MSC transplantation has been proven to improve ICH-induced injury, including the damage of nerve cells and oligodendrocytes, the activation of microglia and astrocytes, and the destruction of blood vessels. The improvement and recovery of neurological functions in rodent ICH models were demonstrated via the mechanisms such as neurogenesis, angiogenesis, anti-inflammation, anti-apoptosis, and synaptic plasticity. Here, we discuss the pathological mechanisms following ICH and the therapeutic mechanisms of MSC-based therapy to unravel new cues for future therapeutic strategies. Furthermore, some potential strategies for enhancing the therapeutic function of MSC transplantation have also been suggested.

13.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34502158

RESUMO

Cancer stem cells (CSCs) play a critical role in radiation resistance and recurrence. Thus, drugs targeting CSCs can be combined with radiotherapy to improve its antitumor efficacy. Here, we investigated whether a gallotannin extract from Bouea macrophylla seed (MPSE) and its main bioactive compound, pentagalloyl glucose (PGG), could suppress the stemness trait and further confer the radiosensitivity of head and neck squamous cell carcinoma (HNSCC) cell lines. In this study, we evaluate the effect of MPSE or PGG to suppress CSC-like phenotypes and radiosensitization of HNSCC cell lines using a series of in vitro experiments, tumorsphere formation assay, colony formation assay, apoptosis assay, and Western blotting analysis. We demonstrate that MPSE or PGG is able to suppress tumorsphere formation and decrease protein expression of cancer stem cell markers. MPSE or PGG also enhanced the radiosensitivity in HNSCC cells. Pretreatment of cells with MPSE or PGG increased IR-induced DNA damage (γ-H2Ax) and enhanced radiation-induced cell death. Notably, we observed that pretreatment with MPSE or PGG attenuated the IR-induced stemness-like properties characterized by tumorsphere formation and the CD44 CSC marker. Our findings describe a novel strategy for increasing therapeutic efficacy for head and neck cancer patients using the natural products MPSE and PGG.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Taninos Hidrolisáveis/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos da radiação , Extratos Vegetais/farmacologia , Radiossensibilizantes/farmacologia , Sementes/química , Anacardiaceae/química , Animais , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço , Humanos , Taninos Hidrolisáveis/química , Camundongos , Estrutura Molecular , Células-Tronco Neoplásicas/metabolismo , Extratos Vegetais/química , Radiossensibilizantes/química , Sementes/anatomia & histologia
14.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34445558

RESUMO

Cell-based therapy is a highly promising treatment paradigm in ischemic disease due to its ability to repair tissue when implanted into a damaged site. These therapeutic effects involve a strong paracrine component resulting from the high levels of bioactive molecules secreted in response to the local microenvironment. Therefore, the secreted therapeutic can be modulated by preconditioning the cells during in vitro culturing. Herein, we investigated the potential use of magnetic resonance imaging (MRI) probes, the "iron-quercetin complex" or IronQ, for preconditioning peripheral blood mononuclear cells (PBMCs) to expand proangiogenic cells and enhance their secreted therapeutic factors. PBMCs obtained from healthy donor blood were cultured in the presence of the iron-quercetin complex. Differentiated preconditioning PBMCs were characterized by immunostaining. An enzyme-linked immunosorbent assay was carried out to describe the secreted cytokines. In vitro migration and tubular formation using human umbilical vein endothelial cells (HUVECs) were completed to investigate the proangiogenic efficacy. IronQ significantly increased mononuclear progenitor cell proliferation and differentiation into spindle-shape-like cells, expressing both hematopoietic and stromal cell markers. The expansion increased the number of colony-forming units (CFU-Hill). The conditioned medium obtained from IronQ-treated PBMCs contained high levels of interleukin 8 (IL-8), IL-10, urokinase-type-plasminogen-activator (uPA), matrix metalloproteinases-9 (MMP-9), and tumor necrosis factor-alpha (TNF-α), as well as augmented migration and capillary network formation of HUVECs and fibroblast cells, in vitro. Our study demonstrated that the IronQ-preconditioning PBMC protocol could enhance the angiogenic and reparative potential of non-mobilized PBMCs. This protocol might be used as an adjunctive strategy to improve the efficacy of cell therapy when using PBMCs for ischemic diseases and chronic wounds. However, in vivo assessment is required for further validation.


Assuntos
Movimento Celular , Fibroblastos/fisiologia , Ferro/farmacologia , Leucócitos Mononucleares/fisiologia , Neovascularização Fisiológica , Quercetina/farmacologia , Cicatrização , Adulto , Antioxidantes/farmacologia , Meios de Cultivo Condicionados/farmacologia , Fibroblastos/citologia , Humanos , Leucócitos Mononucleares/citologia , Oligoelementos/farmacologia , Adulto Jovem
15.
BMC Complement Med Ther ; 21(1): 189, 2021 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-34217266

RESUMO

BACKGROUND: Radioresistance can pose a significant obstacle to the effective treatment of breast cancers. Epithelial-mesenchymal transition (EMT) is a critical step in the acquisition of stem cell traits and radioresistance. Here, we investigated whether Maprang seed extract (MPSE), a gallotannin-rich extract of seed from Bouea macrophylla Griffith, could inhibit the radiation-induced EMT process and enhance the radiosensitivity of breast cancer cells. METHODS: Breast cancer cells were pre-treated with MPSE before irradiation (IR), the radiosensitizing activity of MPSE was assessed using the colony formation assay. Radiation-induced EMT and stemness phenotype were identified using breast cancer stem cells (CSCs) marker (CD24-/low/CD44+) and mammosphere formation assay. Cell motility was determined via the wound healing assay and transwell migration. Radiation-induced cell death was assessed via the apoptosis assay and SA-ß-galactosidase staining for cellular senescence. CSCs- and EMT-related genes were confirmed by real-time PCR (qPCR) and Western blotting. RESULTS: Pre-treated with MPSE before irradiation could reduce the clonogenic activity and enhance radiosensitivity of breast cancer cell lines with sensitization enhancement ratios (SERs) of 2.33 and 1.35 for MCF7 and MDA-MB231cells, respectively. Pretreatment of breast cancer cells followed by IR resulted in an increased level of DNA damage maker (γ-H2A histone family member) and enhanced radiation-induced cell death. Irradiation induced EMT process, which displayed a significant EMT phenotype with a down-regulated epithelial marker E-cadherin and up-regulated mesenchymal marker vimentin in comparison with untreated breast cancer cells. Notably, we observed that pretreatment with MPSE attenuated the radiation-induced EMT process and decrease some stemness-like properties characterized by mammosphere formation and the CSC marker. Furthermore, pretreatment with MPSE attenuated the radiation-induced activation of the pro-survival pathway by decrease the expression of phosphorylation of ERK and AKT and sensitized breast cancer cells to radiation. CONCLUSION: MPSE enhanced the radiosensitivity of breast cancer cells by enhancing IR-induced DNA damage and cell death, and attenuating the IR-induced EMT process and stemness phenotype via targeting survival pathways PI3K/AKT and MAPK in irradiated breast cancer cells. Our findings describe a novel strategy for increasing the efficacy of radiotherapy for breast cancer patients using a safer and low-cost natural product, MPSE.


Assuntos
Transição Epitelial-Mesenquimal , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos da radiação , Extratos Vegetais/farmacologia , Radiossensibilizantes/farmacologia , Anacardiaceae/química , Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama , Linhagem Celular Tumoral , Feminino , Humanos , Taninos Hidrolisáveis/farmacologia , Sementes/química
16.
Artigo em Inglês | MEDLINE | ID: mdl-32382295

RESUMO

Bouea macrophylla Griffith, locally known as maprang, has important economic value as a Thai fruit tree. The maprang seed extract (MPSE) has been shown to exhibit antibacterial and anticancer activities. However, the bioactive constituents in MPSE and the molecular mechanisms underlying these anticancer activities remain poorly understood. This study aims to identify the active compounds in MPSE and to investigate the mechanisms involved in MPSE-induced apoptosis in MCF-7 treated cancer cells. The cytotoxic effect was determined by MTT assay. The apoptosis induction of MPSE was evaluated in terms of ROS production, mitochondrial membrane potential depolarization, and apoptosis-related gene expression. The compounds identified by HPLC and LC/MS analysis were pentagalloyl glucose, ethyl gallate, and gallic acid. MPSE treatment decreased cell proliferation in MCF-7 cells, and MPSE was postulated to induce G2/M phase cell cycle arrest. MPSE was found to promote intracellular ROS production in MCF-7 treated cells and to also influence the depolarization of mitochondrial membrane potential. In addition, MPSE treatment can lead to increase in the Bax/Bcl-2 gene expression ratio, suggesting that MPSE-induced apoptosis is mitochondria-dependent pathway. Our results suggest that natural products obtained from maprang seeds have the potential to target the apoptosis pathway in breast cancer treatments.

17.
Contrast Media Mol Imaging ; 2020: 8877862, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33456403

RESUMO

In cell therapy, contrast agents T1 and T2 are both needed for the labeling and tracking of transplanted stem cells over extended periods of time through magnetic resonance imaging (MRI). Importantly, the metal-quercetin complex via coordination chemistry has been studied extensively for biomedical applications, such as anticancer therapies and imaging probes. Herein, we report on the synthesis, characterization, and labeling of the iron (III)-quercetin complex, "IronQ," in circulating proangiogenic cells (CACs) and also explore tracking via the use of a clinical 1.5 Tesla (T) MRI scanner. Moreover, IronQ had a paramagnetic T1 positive contrast agent property with a saturation magnetization of 0.155 emu/g at 1.0 T and longitudinal relaxivity (r1) values of 2.29 and 3.70 mM-1s-1 at 1.5 T for water and human plasma, respectively. Surprisingly, IronQ was able to promote CAC growth in conventional cell culture systems without the addition of specific growth factors. Increasing dosages of IronQ from 0 to 200 µg/mL led to higher CAC uptake, and maximum labeling time was achieved in 10 days. The accumulated IronQ in CACs was measured by two methodologies, an inductively coupled plasma optical emission spectrometry (ICP-EOS) and T1-weighted MRI. In our research, we confirmed that IronQ has excellent dual functions with the use of an imaging probe for MRI. IronQ can also act as a stimulating agent by favoring circulating proangiogenic cell differentiation. Optimistically, IronQ is considered beneficial for alternative labeling and in the tracking of circulation proangiogenic cells and/or other stem cells in applications of cell therapy through noninvasive magnetic resonance imaging in both preclinical and clinical settings.


Assuntos
Rastreamento de Células/métodos , Meios de Contraste/química , Ferro/química , Leucócitos Mononucleares/citologia , Imageamento por Ressonância Magnética/métodos , Neovascularização Fisiológica , Quercetina/química , Diferenciação Celular , Proliferação de Células , Humanos , Imagens de Fantasmas , Medicina Regenerativa
18.
Sci Rep ; 9(1): 18417, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31804594

RESUMO

Resistance to common drugs by microorganisms and cancers has become a major issue in modern healthcare, increasing the number of deaths worldwide. Novel therapeutic agents with a higher efficiency and less side effects for the treatment of certain diseases are urgently needed. Plant defensins have an integral role in a hosts' immune system and are attractive candidates for combatting drug-resistant microorganisms. Interestingly, some of these defensins also showed great potential due to their cytotoxic activity toward cancer cells. In this study, a defensin encoding gene was isolated from five legume seeds using 3' rapid amplification of cDNA ends (3' RACE) with degenerate primers and cDNA cloning strategies. Bioinformatic tools were used for in silico identification and the characterization of new sequences. To study the functional characteristics of these unique defensins, the gene encoded for Sesbania javanica defensin, designated as javanicin, was cloned into pTXB-1 plasmid and expressed in the Escherichia coli Origami 2 (DE3) strain. Under optimized conditions, a 34-kDa javanicin-intein fusion protein was expressed and approximately 2.5-3.5 mg/L of soluble recombinant javanicin was successfully extracted with over 90% purity. Recombinant javanicin displayed antifungal properties against human pathogenic fungi, including resistant strains, as well as cytotoxic activities toward the human breast cancer cell lines, MCF-7 & MDA-MB-231. Recombinant javanicin holds great promise as a novel therapeutic agent for further medical applications.


Assuntos
Antifúngicos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Defensinas/farmacologia , Proteínas de Plantas/farmacologia , Quassinas/farmacologia , Sesbania/química , Antifúngicos/química , Antifúngicos/isolamento & purificação , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Clonagem Molecular , Defensinas/química , Defensinas/isolamento & purificação , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Células MCF-7 , Testes de Sensibilidade Microbiana , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Quassinas/química , Quassinas/isolamento & purificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sementes/química , Análise de Sequência de DNA , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
19.
Heliyon ; 5(7): e02052, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31338468

RESUMO

In this study, the Maprang (Bouea macrophylla Griffith) seeds of 3 Thai varieties of this plant were studied in terms of nutrition, phytochemicals, chemical antioxidants and the bioactivity of their extracts. Maprang seeds revealed high levels of carbohydrates, dietary fiber, energy, potassium, phosphorus, magnesium, and calcium. The Maprang seed extracts possessed a high polyphenolic content and exhibited antioxidant properties against DPPH˙, ABTS˙+, and ferric reduction. Additionally, 18-compounds were charaterized by RP-HPLC-DAD with two being recognized as gallic acid and ellagic acid and 16-unknown gallotannins. The HPLC fingerprint was composed of 4 major compounds. The extract showed active growth inhibition against leukemia, lung cancer cell lines and for 15 strains of bacteria. It is known to be particularly effective in drug resistant cells. Our results indicated that maprang seeds are a new natural source of nutrition, minerals and phytochemicals that may be applicable for use as a food supplement and as an effective drug in the treatment of certain diseases.

20.
Toxicol Rep ; 5: 840-845, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30148067

RESUMO

This study reveals the antioxidant properties of iodinated radiographic contrast media to be used in diagnostic radiology. Di(phenyl)-(2,4,6-trinitrophenyl) iminoazanium (DPPH), ferric reducing ability of plasma (FRAP), and 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) assays were used for determining in vitro the antioxidant properties of five iodinated radiographic contrast media such as iobitridol (xenetix), iodixanol (visipaque), iohexol (omnipaque), ioxaglate (hexabrix), and isovue (iopamiro). An ascorbic acid and Trolox solution served as a positive control. The absorbance intensity of the colored product was recorded using a spectrophotometer. For DPPH and ABTS assay, the absorbance intensity at 533 and 752 nm, respectively was decreased when compared to control; it indicated an increase in antioxidant activity. For FRAP assay, the absorbance intensity at 593 nm was increased when compared to control; it indicated an increase in antioxidant activity. The results showed that five iodinated radiographic contrast media did not differ in DPPH• radical-scavenging activity when compared to a corresponding control. The ferric reducing ability of all of these iodinated radiographic contrast media also did not differ when compared to a corresponding control, except for iobitridol at 200 mgI/mL and ioxaglate at 50-200 mgI/mL. All iodinated radiographic contrast media showed ABTS•+ radical-scavenging activity. This finding suggested that iobitridol, iodixanol, iohexol, ioxaglate, and isovue exhibited weak in vitro antioxidant properties. The antioxidant ability depended on the type of free radical production and the concentration of iodinated radiographic contrast media.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...