Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Evol Appl ; 17(2): e13666, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38405336

RESUMO

Directional selection alters the genome via hard sweeps, soft sweeps, and polygenic selection. However, mapping polygenic selection is difficult because it does not leave clear signatures on the genome like a selective sweep. In populations with temporally stratified genotypes, the Generation Proxy Selection Mapping (GPSM) method identifies variants associated with generation number (or appropriate proxy) and thus variants undergoing directional allele frequency changes. Here, we use GPSM on two large datasets of beef cattle to detect associations between an animal's generation and 11 million imputed SNPs. Using these datasets with high power and dense mapping resolution, GPSM detected a total of 294 unique loci actively under selection in two cattle breeds. We observed that GPSM has a high power to detect selection in the very recent past (<10 years), even when allele frequency changes are small. Variants identified by GPSM reside in genomic regions associated with known breed-specific selection objectives, such as fertility and maternal ability in Red Angus, and carcass merit and coat color in Simmental. Over 60% of the selected loci reside in or near (<50 kb) annotated genes. Using haplotype-based and composite selective sweep statistics, we identify hundreds of putative selective sweeps that likely occurred earlier in the evolution of these breeds; however, these sweeps have little overlap with recent polygenic selection. This makes GPSM a complementary approach to sweep detection methods when temporal genotype data are available. The selected loci that we identify across methods demonstrate the complex architecture of selection in domesticated cattle.

2.
G3 (Bethesda) ; 14(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38092373

RESUMO

Seasonal shedding of winter hair at the start of summer is well studied in wild and domesticated populations. However, the genetic influences on this trait and their interactions are poorly understood. We use data from 13,364 cattle with 36,899 repeated phenotypes to investigate the relationship between hair shedding and environmental variables, single nucleotide polymorphisms, and their interactions to understand quantitative differences in seasonal shedding. Using deregressed estimated breeding values from a repeated records model in a genome-wide association analysis (GWAA) and meta-analysis of year-specific GWAA gave remarkably similar results. These GWAA identified hundreds of variants associated with seasonal hair shedding. There were especially strong associations between chromosomes 5 and 23. Genotype-by-environment interaction GWAA identified 1,040 day length-by-genotype interaction associations and 17 apparent temperature-by-genotype interaction associations with hair shedding, highlighting the importance of day length on hair shedding. Accurate genomic predictions of hair shedding were created for the entire dataset, Angus, Hereford, Brangus, and multibreed datasets. Loci related to metabolism and light-sensing have a large influence on seasonal hair shedding. This is one of the largest genetic analyses of a phenological trait and provides insight into both agriculture production and basic science.


Assuntos
Sinais (Psicologia) , Estudo de Associação Genômica Ampla , Bovinos/genética , Animais , Estações do Ano , Genoma , Genótipo , Genômica , Polimorfismo de Nucleotídeo Único
3.
Genet Sel Evol ; 55(1): 62, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37710159

RESUMO

BACKGROUND: Artificial selection on quantitative traits using breeding values and selection indices in commercial livestock breeding populations causes changes in allele frequency over time at hundreds or thousands of causal loci and the surrounding genomic regions. In population genetics, this type of selection is called polygenic selection. Researchers and managers of pig breeding programs are motivated to understand the genetic basis of phenotypic diversity across genetic lines, breeds, and populations using selection mapping analyses. Here, we applied generation proxy selection mapping (GPSM), a genome-wide association analysis of single nucleotide polymorphism (SNP) genotypes (38,294-46,458 markers) of birth date, in four pig populations (15,457, 15,772, 16,595 and 8447 pigs per population) to identify loci responding to artificial selection over a period of five to ten years. Gene-drop simulation analyses were conducted to provide context for the GPSM results. Selected loci within and across each population of pigs were compared in the context of swine breeding objectives. RESULTS: The GPSM identified 49 to 854 loci as under selection (Q-values less than 0.10) across 15 subsets of pigs based on combinations of populations. The number of significant associations increased when data were pooled across populations. In addition, several significant associations were identified in more than one population. These results indicate concurrent selection objectives, similar genetic architectures, and shared causal variants responding to selection across these pig populations. Negligible error rates (less than or equal to 0.02%) of false-positive associations were found when testing GPSM on gene-drop simulated genotypes, suggesting that GPSM distinguishes selection from random genetic drift in actual pig populations. CONCLUSIONS: This work confirms the efficacy and the negligible error rates of the GPSM method in detecting selected loci in commercial pig populations. Our results suggest shared selection objectives and genetic architectures across swine populations. The identified polygenic selection highlights loci that are important to swine production.


Assuntos
Estudo de Associação Genômica Ampla , Genômica , Suínos/genética , Animais , Genótipo , Simulação por Computador , Frequência do Gene
4.
Heredity (Edinb) ; 129(6): 346-355, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36319737

RESUMO

Cat domestication likely initiated as a symbiotic relationship between wildcats (Felis silvestris subspecies) and the peoples of developing agrarian societies in the Fertile Crescent. As humans transitioned from hunter-gatherers to farmers ~12,000 years ago, bold wildcats likely capitalized on increased prey density (i.e., rodents). Humans benefited from the cats' predation on these vermin. To refine the site(s) of cat domestication, over 1000 random-bred cats of primarily Eurasian descent were genotyped for single-nucleotide variants and short tandem repeats. The overall cat population structure suggested a single worldwide population with significant isolation by the distance of peripheral subpopulations. The cat population heterozygosity decreased as genetic distance from the proposed cat progenitor's (F.s. lybica) natural habitat increased. Domestic cat origins are focused in the eastern Mediterranean Basin, spreading to nearby islands, and southernly via the Levantine coast into the Nile Valley. Cat population diversity supports the migration patterns of humans and other symbiotic species.


Assuntos
Domesticação , Repetições de Microssatélites , Animais , Gatos/genética , Genótipo , Oriente Médio
5.
BMC Genomics ; 23(1): 517, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842584

RESUMO

BACKGROUND: Genotypic information produced from single nucleotide polymorphism (SNP) arrays has routinely been used to identify genomic regions associated with complex traits in beef and dairy cattle. Herein, we assembled a dataset consisting of 15,815 Red Angus beef cattle distributed across the continental U.S. and a union set of 836,118 imputed SNPs to conduct genome-wide association analyses (GWAA) for growth traits using univariate linear mixed models (LMM); including birth weight, weaning weight, and yearling weight. Genomic relationship matrix heritability estimates were produced for all growth traits, and genotype-by-environment (GxE) interactions were investigated. RESULTS: Moderate to high heritabilities with small standard errors were estimated for birth weight (0.51 ± 0.01), weaning weight (0.25 ± 0.01), and yearling weight (0.42 ± 0.01). GWAA revealed 12 pleiotropic QTL (BTA6, BTA14, BTA20) influencing Red Angus birth weight, weaning weight, and yearling weight which met a nominal significance threshold (P ≤ 1e-05) for polygenic traits using 836K imputed SNPs. Moreover, positional candidate genes associated with Red Angus growth traits in this study (i.e., LCORL, LOC782905, NCAPG, HERC6, FAM184B, SLIT2, MMRN1, KCNIP4, CCSER1, GRID2, ARRDC3, PLAG1, IMPAD1, NSMAF, PENK, LOC112449660, MOS, SH3PXD2B, STC2, CPEB4) were also previously associated with feed efficiency, growth, and carcass traits in beef cattle. Collectively, 14 significant GxE interactions were also detected, but were less consistent among the investigated traits at a nominal significance threshold (P ≤ 1e-05); with one pleiotropic GxE interaction detected on BTA28 (24 Mb) for Red Angus weaning weight and yearling weight. CONCLUSIONS: Sixteen well-supported QTL regions detected from the GWAA and GxE GWAA for growth traits (birth weight, weaning weight, yearling weight) in U.S. Red Angus cattle were found to be pleiotropic. Twelve of these pleiotropic QTL were also identified in previous studies focusing on feed efficiency and growth traits in multiple beef breeds and/or their composites. In agreement with other beef cattle GxE studies our results implicate the role of vasodilation, metabolism, and the nervous system in the genetic sensitivity to environmental stress.


Assuntos
Interação Gene-Ambiente , Estudo de Associação Genômica Ampla , Animais , Peso ao Nascer/genética , Bovinos/genética , Genoma , Estudo de Associação Genômica Ampla/veterinária , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único
6.
G3 (Bethesda) ; 12(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35188205

RESUMO

The Neosho madtom (Noturus placidus) is a small catfish, generally less than 3 inches in length, unique to the Neosho-Spring River system within the Arkansas River Basin. It was federally listed as threatened in 1990, largely due to habitat loss. For conservation efforts, we generated whole-genome sequence data from 10 Neosho madtom individuals originating from 3 geographically separated populations to evaluate genetic diversity and population structure. A Neosho madtom genome was de novo assembled, and genome size and content were assessed. Single nucleotide polymorphisms were assessed from de Bruijn graphs, and via reference alignment with both the channel catfish (Ictalurus punctatus) reference genome and Neosho madtom reference genome. Principal component analysis and structure analysis indicated weak population structure, suggesting fish from the 3 locations represent a single population. Using a novel method, genome-wide conservation and divergence between the Neosho madtom, channel catfish, and zebrafish (Danio rerio) was assessed by pairwise contig alignment, which demonstrated that genes important to embryonic development frequently had conserved sequences. This research in a threatened species with no previously published genomic resources provides novel genetic information to guide current and future conservation efforts and demonstrates that using whole-genome sequencing provides detailed information of population structure and demography using only a limited number of rare and valuable samples.


Assuntos
Ictaluridae , Animais , Espécies em Perigo de Extinção , Variação Genética , Genoma , Ictaluridae/genética , Peixe-Zebra/genética
7.
Front Genet ; 12: 758394, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733318

RESUMO

Development of the American Breeds of beef cattle began in the 1920s as breeders and U. S. Experiment Station researchers began to create Bos taurus taurus × Bos taurus indicus hybrids using Brahman as the B. t. indicus source. By 1954, U.S. Breed Associations had been formed for Brangus (5/8 Angus × 3/8 Brahman), Beefmaster (½ Brahman × » Shorthorn × » Hereford), and Santa Gertrudis (5/8 Shorthorn × 3/8 Brahman). While these breeds were developed using mating designs expected to create base generation animals with the required genome contributions from progenitor breeds, each association has now registered advanced generation animals in which selection or drift may have caused the realized genome compositions to differ from initial expected proportions. The availability of high-density SNP genotypes for 9,161 Brangus, 3,762 Beefmaster, and 1,942 Santa Gertrudis animals allowed us to compare the realized genomic architectures of breed members to the base generation expectations. We used RFMix to estimate local ancestry and identify genomic regions in which the proportion of Brahman ancestry differed significantly from a priori expectations. For all three breeds, lower than expected levels of Brahman composition were found genome-wide, particularly in early-generation animals where we demonstrate that selection on beef production traits was likely responsible for the taurine enrichment. Using a proxy for generation number, we also contrasted the genomes of early- and advanced-generation animals and found that the indicine composition of the genome has increased with generation number likely due to selection on adaptive traits. Many of the most-highly differentiated genomic regions were breed specific, suggesting that differences in breeding objectives and selection intensities exist between the breeds. Global ancestry estimation is commonly performed in admixed animals to control for stratification in association studies. However, local ancestry estimation provides the opportunity to investigate the evolution of specific chromosomal segments and estimate haplotype effects on trait variation in admixed individuals. Investigating the genomic architecture of the American Breeds not only allows the estimation of indicine and taurine genome proportions genome-wide, but also the locations within the genome where either taurine or indicine alleles confer a selective advantage.

8.
PLoS One ; 16(11): e0258735, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34731205

RESUMO

The Caribbean is a genetically diverse region with heterogeneous admixture compositions influenced by local island ecologies, migrations, colonial conflicts, and demographic histories. The Commonwealth of Dominica is a mountainous island in the Lesser Antilles historically known to harbor communities with unique patterns of migration, mixture, and isolation. This community-based population genetic study adds biological evidence to inform post-colonial narrative histories in a Dominican horticultural village. High density single nucleotide polymorphism data paired with a previously compiled genealogy provide the first genome-wide insights on genetic ancestry and population structure in Dominica. We assessed family-based clustering, inferred global ancestry, and dated recent admixture by implementing the fastSTRUCTURE clustering algorithm, modeling graph-based migration with TreeMix, assessing patterns of linkage disequilibrium decay with ALDER, and visualizing data from Dominica with Human Genome Diversity Panel references. These analyses distinguish family-based genetic structure from variation in African, European, and indigenous Amerindian admixture proportions, and analyses of linkage disequilibrium decay estimate admixture dates 5-6 generations (~160 years) ago. African ancestry accounts for the largest mixture components, followed by European and then indigenous components; however, our global ancestry inferences are consistent with previous mitochondrial, Y chromosome, and ancestry marker data from Dominica that show uniquely higher proportions of indigenous ancestry and lower proportions of African ancestry relative to known admixture in other French- and English-speaking Caribbean islands. Our genetic results support local narratives about the community's history and founding, which indicate that newly emancipated people settled in the steep, dense vegetation along Dominica's eastern coast in the mid-19th century. Strong genetic signals of post-colonial admixture and family-based structure highlight the localized impacts of colonial forces and island ecologies in this region, and more data from other groups are needed to more broadly inform on Dominica's complex history and present diversity.


Assuntos
Genética Populacional , Genoma Humano/genética , Desequilíbrio de Ligação/genética , População Rural , Adolescente , Adulto , População Negra/genética , Dominica/epidemiologia , Etnicidade/genética , Feminino , Variação Genética/genética , Hispânico ou Latino/genética , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Índias Ocidentais/epidemiologia , População Branca/genética , Adulto Jovem
9.
PLoS Genet ; 17(7): e1009652, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34292938

RESUMO

Selection on complex traits can rapidly drive evolution, especially in stressful environments. This polygenic selection does not leave intense sweep signatures on the genome, rather many loci experience small allele frequency shifts, resulting in large cumulative phenotypic changes. Directional selection and local adaptation are changing populations; but, identifying loci underlying polygenic or environmental selection has been difficult. We use genomic data on tens of thousands of cattle from three populations, distributed over time and landscapes, in linear mixed models with novel dependent variables to map signatures of selection on complex traits and local adaptation. We identify 207 genomic loci associated with an animal's birth date, representing ongoing selection for monogenic and polygenic traits. Additionally, hundreds of additional loci are associated with continuous and discrete environments, providing evidence for historical local adaptation. These candidate loci highlight the nervous system's possible role in local adaptation. While advanced technologies have increased the rate of directional selection in cattle, it has likely been at the expense of historically generated local adaptation, which is especially problematic in changing climates. When applied to large, diverse cattle datasets, these selection mapping methods provide an insight into how selection on complex traits continually shapes the genome. Further, understanding the genomic loci implicated in adaptation may help us breed more adapted and efficient cattle, and begin to understand the basis for mammalian adaptation, especially in changing climates. These selection mapping approaches help clarify selective forces and loci in evolutionary, model, and agricultural contexts.


Assuntos
Adaptação Biológica/genética , Bovinos/genética , Herança Multifatorial/genética , Aclimatação/genética , Adaptação Fisiológica/genética , Alelos , Animais , Evolução Biológica , Meio Ambiente , Frequência do Gene/genética , Estudo de Associação Genômica Ampla/métodos , Genômica , Genótipo , Modelos Genéticos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Seleção Genética/genética
10.
Mol Biol Evol ; 38(10): 4419-4434, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34157722

RESUMO

Understanding the evolutionary history of crops, including identifying wild relatives, helps to provide insight for conservation and crop breeding efforts. Cultivated Brassica oleracea has intrigued researchers for centuries due to its wide diversity in forms, which include cabbage, broccoli, cauliflower, kale, kohlrabi, and Brussels sprouts. Yet, the evolutionary history of this species remains understudied. With such different vegetables produced from a single species, B. oleracea is a model organism for understanding the power of artificial selection. Persistent challenges in the study of B. oleracea include conflicting hypotheses regarding domestication and the identity of the closest living wild relative. Using newly generated RNA-seq data for a diversity panel of 224 accessions, which represents 14 different B. oleracea crop types and nine potential wild progenitor species, we integrate phylogenetic and population genetic techniques with ecological niche modeling, archaeological, and literary evidence to examine relationships among cultivars and wild relatives to clarify the origin of this horticulturally important species. Our analyses point to the Aegean endemic B. cretica as the closest living relative of cultivated B. oleracea, supporting an origin of cultivation in the Eastern Mediterranean region. Additionally, we identify several feral lineages, suggesting that cultivated plants of this species can revert to a wild-like state with relative ease. By expanding our understanding of the evolutionary history in B. oleracea, these results contribute to a growing body of knowledge on crop domestication that will facilitate continued breeding efforts including adaptation to changing environmental conditions.


Assuntos
Brassica , Melhoramento Vegetal , Evolução Biológica , Brassica/genética , Produtos Agrícolas/genética , Filogenia
11.
Sci Rep ; 11(1): 13335, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172761

RESUMO

Understanding genotype-by-environment interactions (G × E) is crucial to understand environmental adaptation in mammals and improve the sustainability of agricultural production. Here, we present an extensive study investigating the interaction of genome-wide SNP markers with a vast assortment of environmental variables and searching for SNPs controlling phenotypic variance (vQTL) using a large beef cattle dataset. We showed that G × E contribute 10.1%, 3.8%, and 2.8% of the phenotypic variance of birth weight, weaning weight, and yearling weight, respectively. G × E genome-wide association analysis (GWAA) detected a large number of G × E loci affecting growth traits, which the traditional GWAA did not detect, showing that functional loci may have non-additive genetic effects regardless of differences in genotypic means. Further, variance-heterogeneity GWAA detected loci enriched with G × E effects without requiring prior knowledge of the interacting environmental factors. Functional annotation and pathway analysis of G × E genes revealed biological mechanisms by which cattle respond to changes in their environment, such as neurotransmitter activity, hypoxia-induced processes, keratinization, hormone, thermogenic and immune pathways. We unraveled the relevance and complexity of the genetic basis of G × E underlying growth traits, providing new insights into how different environmental conditions interact with specific genes influencing adaptation and productivity in beef cattle and potentially across mammals.


Assuntos
Estudo de Associação Genômica Ampla/veterinária , Locos de Características Quantitativas/genética , Animais , Peso ao Nascer/genética , Bovinos , Interação Gene-Ambiente , Genômica/métodos , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Desmame
13.
Genomics ; 113(3): 1491-1503, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33771637

RESUMO

Domestication and subsequent selection of cattle to form breeds and biological types that can adapt to different environments partitioned ancestral genetic diversity into distinct modern lineages. Genome-wide selection particularly for adaptation to extreme environments left detectable signatures genome-wide. We used high-density genotype data for 42 cattle breeds and identified the influence of Bos grunniens and Bos javanicus on the formation of Chinese indicine breeds that led to their divergence from India-origin zebu. We also found evidence for introgression, admixture, and migration in most of the Chinese breeds. Selection signature analyses between high-altitude (≥1800 m) and low-altitude adapted breeds (<1500 m) revealed candidate genes (ACSS2, ALDOC, EPAS1, EGLN1, NUCB2) and pathways that are putatively involved in hypoxia adaptation. Immunohistochemical, real-time PCR and CRISPR/cas9 ACSS2-knockout analyses suggest that the up-regulation of ACSS2 expression in the liver promotes the metabolic adaptation of cells to hypoxia via the hypoxia-inducible factor pathway. High altitude adaptation involved the introgression of alleles from high-altitude adapted yaks into Chinese Bos taurus taurus prior to their formation into recognized breeds and followed by selection. In addition to selection, adaptation to high altitude environments has been facilitated by admixture and introgression with locally adapted cattle populations.


Assuntos
Altitude , Polimorfismo de Nucleotídeo Único , Aclimatação/genética , Alelos , Animais , Bovinos/genética , Genótipo , Seleção Genética
14.
Trends Genet ; 37(4): 302-305, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33546926

RESUMO

Feral populations, those which successfully persist outside of cultivation or husbandry, provide unique opportunities to study the genomic impacts of domestication and local adaptation. We argue that by leveraging genomic resources designed for domestic counterparts, powerful phylogenetic and population genomic data collection and analyses can be designed to disentangle complex demographic processes.


Assuntos
Adaptação Fisiológica/genética , Domesticação , Variação Genética/genética , Seleção Genética/genética , Animais , Cruzamento , Genômica , Humanos , Filogenia , Polimorfismo de Nucleotídeo Único/genética
15.
Genet Sel Evol ; 52(1): 63, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087048

RESUMO

BACKGROUND: Heat stress and fescue toxicosis caused by ingesting tall fescue infected with the endophytic fungus Epichloë coenophiala represent two of the most prevalent stressors to beef cattle in the United States and cost the beef industry millions of dollars each year. The rate at which a beef cow sheds her winter coat early in the summer is an indicator of adaptation to heat and an economically relevant trait in temperate or subtropical parts of the world. Furthermore, research suggests that early-summer hair shedding may reflect tolerance to fescue toxicosis, since vasoconstriction induced by fescue toxicosis limits the ability of an animal to shed its winter coat. Both heat stress and fescue toxicosis reduce profitability partly via indirect maternal effects on calf weaning weight. Here, we developed parameters for routine genetic evaluation of hair shedding score in American Angus cattle, and identified genomic loci associated with variation in hair shedding score via genome-wide association analysis (GWAA). RESULTS: Hair shedding score was moderately heritable (h2 = 0.34 to 0.40), with different repeatability estimates between cattle grazing versus not grazing endophyte-infected tall fescue. Our results suggest modestly negative genetic and phenotypic correlations between a dam's hair shedding score (lower score is earlier shedding) and the weaning weight of her calf, which is one metric of performance. Together, these results indicate that economic gains can be made by using hair shedding score breeding values to select for heat-tolerant cattle. GWAA identified 176 variants significant at FDR < 0.05. Functional enrichment analyses using genes that were located within 50 kb of these variants identified pathways involved in keratin formation, prolactin signalling, host-virus interaction, and other biological processes. CONCLUSIONS: This work contributes to a continuing trend in the development of genetic evaluations for environmental adaptation. Our results will aid beef cattle producers in selecting more sustainable and climate-adapted cattle, as well as enable the development of similar routine genetic evaluations in other breeds.


Assuntos
Pelo Animal/fisiologia , Cruzamento/métodos , Bovinos/genética , Característica Quantitativa Herdável , Termotolerância/genética , Animais , Peso Corporal/genética , Bovinos/crescimento & desenvolvimento , Bovinos/fisiologia , Doenças dos Bovinos/genética , Doenças dos Bovinos/fisiopatologia , Suscetibilidade a Doenças , Epichloe , Queratinas/genética , Queratinas/metabolismo , Micotoxicose/genética , Micotoxicose/fisiopatologia , Micotoxicose/veterinária , Polimorfismo de Nucleotídeo Único , Prolactina/genética , Prolactina/metabolismo , Desmame
16.
Front Genet ; 11: 717, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32719722

RESUMO

The objectives of this study were to explore the usefulness of blood-based traits as indicators of health and performance in beef cattle at weaning and identify the genetic basis underlying the different blood parameters obtained from complete blood counts (CBCs). Disease costs represent one of the main factors determining profitability in animal production. Previous research has observed associations between blood cell counts and an animal's health status in some species. CBC were recorded from approximately 570 Angus based, crossbred beef calves at weaning born between 2015 and 2016 and raised on toxic or novel tall fescue. The calves (N = ∼600) were genotyped at a density of 50k SNPs and the genotypes (N = 1160) were imputed to a density of 270k SNPs. Genetic parameters were estimated for 15 blood and 4 production. Finally, with the objective of identifying the genetic basis underlying the different blood-based traits, genome-wide association studies (GWAS) were performed for all traits. Heritability estimates ranged from 0.11 to 0.60, and generally weak phenotypic correlations and strong genetic correlations were observed among blood-based traits only. Genome-wide association study identified ninety-one 1-Mb windows that accounted for 0.5% or more of the estimated genetic variance for at least 1 trait with 21 windows overlapping across two or more traits (explaining more than 0.5% of estimated genetic variance for two or more traits). Five candidate genes have been identified in the most interesting overlapping regions related to blood-based traits. Overall, this study represents one of the first efforts represented in scientific literature to identify the genetic basis of blood cell traits in beef cattle. The results presented in this study allow us to conclude that: (1) blood-based traits have weak phenotypic correlations but strong genetic correlations among themselves. (2) Blood-based traits have moderate to high heritability. (3) There is evidence of an important overlap of genetic control among similar blood-based traits which will allow for their use in improvement programs in beef cattle.

17.
BMC Genomics ; 20(1): 926, 2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31801456

RESUMO

BACKGROUND: Single nucleotide polymorphism (SNP) arrays have facilitated discovery of genetic markers associated with complex traits in domestic cattle; thereby enabling modern breeding and selection programs. Genome-wide association analyses (GWAA) for growth traits were conducted on 10,837 geographically diverse U.S. Gelbvieh cattle using a union set of 856,527 imputed SNPs. Birth weight (BW), weaning weight (WW), and yearling weight (YW) were analyzed using GEMMA and EMMAX (via imputed genotypes). Genotype-by-environment (GxE) interactions were also investigated. RESULTS: GEMMA and EMMAX produced moderate marker-based heritability estimates that were similar for BW (0.36-0.37, SE = 0.02-0.06), WW (0.27-0.29, SE = 0.01), and YW (0.39-0.41, SE = 0.01-0.02). GWAA using 856K imputed SNPs (GEMMA; EMMAX) revealed common positional candidate genes underlying pleiotropic QTL for Gelbvieh growth traits on BTA6, BTA7, BTA14, and BTA20. The estimated proportion of phenotypic variance explained (PVE) by the lead SNP defining these QTL (EMMAX) was larger and most similar for BW and YW, and smaller for WW. Collectively, GWAAs (GEMMA; EMMAX) produced a highly concordant set of BW, WW, and YW QTL that met a nominal significance level (P ≤ 1e-05), with prioritization of common positional candidate genes; including genes previously associated with stature, feed efficiency, and growth traits (i.e., PLAG1, NCAPG, LCORL, ARRDC3, STC2). Genotype-by-environment QTL were not consistent among traits at the nominal significance threshold (P ≤ 1e-05); although some shared QTL were apparent at less stringent significance thresholds (i.e., P ≤ 2e-05). CONCLUSIONS: Pleiotropic QTL for growth traits were detected on BTA6, BTA7, BTA14, and BTA20 for U.S. Gelbvieh beef cattle. Seven QTL detected for Gelbvieh growth traits were also recently detected for feed efficiency and growth traits in U.S. Angus, SimAngus, and Hereford cattle. Marker-based heritability estimates and the detection of pleiotropic QTL segregating in multiple breeds support the implementation of multiple-breed genomic selection.


Assuntos
Peso ao Nascer/genética , Estudo de Associação Genômica Ampla/veterinária , Análise de Sequência com Séries de Oligonucleotídeos/veterinária , Locos de Características Quantitativas , Animais , Bovinos , Interação Gene-Ambiente , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável , Especificidade da Espécie , Desmame
18.
Genet Sel Evol ; 51(1): 77, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31878893

RESUMO

BACKGROUND: During the last decade, the use of common-variant array-based single nucleotide polymorphism (SNP) genotyping in the beef and dairy industries has produced an astounding amount of medium-to-low density genomic data. Although low-density assays work well in the context of genomic prediction, they are less useful for detecting and mapping causal variants and the effects of rare variants are not captured. The objective of this project was to maximize the accuracies of genotype imputation from medium- and low-density assays to the marker set obtained by combining two high-density research assays (~ 850,000 SNPs), the Illumina BovineHD and the GGP-F250 assays, which contains a large proportion of rare and potentially functional variants and for which the assay design is described here. This 850 K SNP set is useful for both imputation to sequence-level genotypes and direct downstream analysis. RESULTS: We found that a large multi-breed composite imputation reference panel that includes 36,131 samples with either BovineHD and/or GGP-F250 genotypes significantly increased imputation accuracy compared with a within-breed reference panel, particularly at variants with low minor allele frequencies. Individual animal imputation accuracies were maximized when more genetically similar animals were represented in the composite reference panel, particularly with complete 850 K genotypes. The addition of rare variants from the GGP-F250 assay to our composite reference panel significantly increased the imputation accuracy of rare variants that are exclusively present on the BovineHD assay. In addition, we show that an assay marker density of 50 K SNPs balances cost and accuracy for imputation to 850 K. CONCLUSIONS: Using high-density genotypes on all available individuals in a multi-breed reference panel maximized imputation accuracy for tested cattle populations. Admixed animals or those from breeds with a limited representation in the composite reference panel were still imputed at high accuracy, which is expected to further increase as the reference panel expands. We anticipate that the addition of rare variants from the GGP-F250 assay will increase the accuracy of imputation to sequence level.


Assuntos
Cruzamento , Bovinos/genética , Polimorfismo de Nucleotídeo Único , Animais , Genômica , Genótipo , Técnicas de Genotipagem
19.
PLoS One ; 14(8): e0221471, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31449539

RESUMO

In many beef and some dairy production systems, crossbreeding is used to take advantage of breed complementarity and heterosis. Admixed animals are frequently identified by their coat color and body conformation phenotypes, however, without pedigree information it is not possible to identify the expected breed composition of an admixed animal and in the presence of selection, the actual composition may differ from expectation. As the roles of DNA and genotype data become more pervasive in animal agriculture, a systematic method for estimating the breed composition (the proportions of an animal's genome originating from ancestral pure breeds) has utility for a variety of downstream analyses including the estimation of genomic breeding values for crossbred animals, the estimation of quantitative trait locus effects, and heterosis and heterosis retention in advanced generation composite animals. Currently, there is no automated or semi-automated ancestry estimation platform for cattle and the objective of this study was to evaluate the utility of extant public software for ancestry estimation and determine the effects of reference population size and composition and number of utilized single nucleotide polymorphism loci on ancestry estimation. We also sought to develop an analysis pipeline that would simplify this process for members of the livestock genomics research community. We developed and tested a tool, "CRUMBLER", to estimate the global ancestry of cattle using ADMIXTURE and SNPweights based on a defined reference panel. CRUMBLER, was developed and evaluated in cattle, but is a species agnostic pipeline that facilitates the streamlined estimation of breed composition for individuals with potentially complex ancestries using publicly available global ancestry software and a specified reference population SNP dataset. We developed the reference panel from a large cattle genotype data set and breed association pedigree information using iterative analyses to identify purebred individuals that were representative of each breed. We also evaluated the numbers of markers necessary for breed composition estimation and simulated genotypes for advanced generation composite animals to evaluate the precision of the developed tool. The developed CRUMBLER pipeline extracts a specified subset of genotypes that is common to all current commercially available genotyping platforms, processes these into the file formats required for the analysis software, and predicts admixture proportions using the specified reference population allele frequencies.


Assuntos
Bovinos/genética , Filogenia , Software , Animais , Cruzamento , Pool Gênico , Marcadores Genéticos , Genótipo , Hibridização Genética , Linhagem , Polimorfismo de Nucleotídeo Único/genética , Padrões de Referência , Reprodutibilidade dos Testes , Tamanho da Amostra
20.
BMC Genomics ; 20(1): 555, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31277567

RESUMO

BACKGROUND: National genetic evaluations for disease resistance do not exist, precluding the genetic improvement of cattle for these traits. We imputed BovineHD genotypes to whole genome sequence for 2703 Holsteins that were cases or controls for Bovine Respiratory Disease and sampled from either California or New Mexico to construct and compare genomic prediction models. The sequence variation reference dataset comprised variants called for 1578 animals from Run 5 of the 1000 Bull Genomes Project, including 450 Holsteins and 29 animals sequenced from this study population. Genotypes for 9,282,726 variants with minor allele frequencies ≥5% were imputed and used to obtain genomic predictions in GEMMA using a Bayesian Sparse Linear Mixed Model. RESULTS: Variation explained by markers increased from 13.6% using BovineHD data to 14.4% using imputed whole genome sequence data and the resolution of genomic regions detected as harbouring QTL substantially increased. Explained variation in the analysis of the combined California and New Mexico data was less than when data for each state were separately analysed and the estimated genetic correlation between risk of Bovine Respiratory Disease in California and New Mexico Holsteins was - 0.36. Consequently, genomic predictions trained using the data from one state did not accurately predict disease risk in the other state. To determine if a prediction model could be developed with utility in both states, we selected variants within genomic regions harbouring: 1) genes involved in the normal immune response to infection by pathogens responsible for Bovine Respiratory Disease detected by RNA-Seq analysis, and/or 2) QTL identified in the association analysis of the imputed sequence variants. The model based on QTL selected variants is biased but when trained in one state generated BRD risk predictions with positive accuracies in the other state. CONCLUSIONS: We demonstrate the utility of sequence-based and biology-driven model development for genomic selection. Disease phenotypes cannot be routinely recorded in most livestock species and the observed phenotypes may vary in their genomic architecture due to variation in the pathogen composition across environments. Elucidation of trait biology and genetic architecture may guide the development of prediction models with utility across breeds and environments.


Assuntos
Complexo Respiratório Bovino/genética , Locos de Características Quantitativas , Animais , Teorema de Bayes , California , Estudos de Casos e Controles , Bovinos , Frequência do Gene , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Modelos Genéticos , New Mexico , Reprodutibilidade dos Testes , Análise de Sequência de RNA , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...