Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Mol Psychiatry ; 28(11): 4568-4584, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37723284

RESUMO

In the past two decades, over-prescription of opioids for pain management has driven a steep increase in opioid use disorder (OUD) and death by overdose, exerting a dramatic toll on western countries. OUD is a chronic relapsing disease associated with a lifetime struggle to control drug consumption, suggesting that opioids trigger long-lasting brain adaptations, notably through functional genomic and epigenomic mechanisms. Current understanding of these processes, however, remain scarce, and have not been previously reviewed systematically. To do so, the goal of the present work was to synthesize current knowledge on genome-wide transcriptomic and epigenetic mechanisms of opioid action, in primate and rodent species. Using a prospectively registered methodology, comprehensive literature searches were completed in PubMed, Embase, and Web of Science. Of the 2709 articles identified, 73 met our inclusion criteria and were considered for qualitative analysis. Focusing on the 5 most studied nervous system structures (nucleus accumbens, frontal cortex, whole striatum, dorsal striatum, spinal cord; 44 articles), we also conducted a quantitative analysis of differentially expressed genes, in an effort to identify a putative core transcriptional signature of opioids. Only one gene, Cdkn1a, was consistently identified in eleven studies, and globally, our results unveil surprisingly low consistency across published work, even when considering most recent single-cell approaches. Analysis of sources of variability detected significant contributions from species, brain structure, duration of opioid exposure, strain, time-point of analysis, and batch effects, but not type of opioid. To go beyond those limitations, we leveraged threshold-free methods to illustrate how genome-wide comparisons may generate new findings and hypotheses. Finally, we discuss current methodological development in the field, and their implication for future research and, ultimately, better care.


Assuntos
Overdose de Drogas , Transtornos Relacionados ao Uso de Opioides , Animais , Humanos , Analgésicos Opioides/farmacologia , Analgésicos Opioides/uso terapêutico , Transtornos Relacionados ao Uso de Opioides/genética , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Doença Crônica , Genômica , Modelos Animais
2.
Prog Neurobiol ; 227: 102483, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37327984

RESUMO

Cytoplasmic mislocalization of the nuclear Fused in Sarcoma (FUS) protein is associated to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Cytoplasmic FUS accumulation is recapitulated in the frontal cortex and spinal cord of heterozygous Fus∆NLS/+ mice. Yet, the mechanisms linking FUS mislocalization to hippocampal function and memory formation are still not characterized. Herein, we show that in these mice, the hippocampus paradoxically displays nuclear FUS accumulation. Multi-omic analyses showed that FUS binds to a set of genes characterized by the presence of an ETS/ELK-binding motifs, and involved in RNA metabolism, transcription, ribosome/mitochondria and chromatin organization. Importantly, hippocampal nuclei showed a decompaction of the neuronal chromatin at highly expressed genes and an inappropriate transcriptomic response was observed after spatial training of Fus∆NLS/+ mice. Furthermore, these mice lacked precision in a hippocampal-dependent spatial memory task and displayed decreased dendritic spine density. These studies shows that mutated FUS affects epigenetic regulation of the chromatin landscape in hippocampal neurons, which could participate in FTD/ALS pathogenic events. These data call for further investigation in the neurological phenotype of FUS-related diseases and open therapeutic strategies towards epigenetic drugs.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Animais , Camundongos , Esclerose Lateral Amiotrófica/genética , Cromatina/metabolismo , Epigênese Genética , Demência Frontotemporal/genética , Hipocampo/metabolismo , Mutação , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo
3.
Prog Neurobiol ; 219: 102363, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36179935

RESUMO

Molecular mechanisms underlying cognitive deficits in Huntington's disease (HD), a striatal neurodegenerative disorder, are unknown. Here, we generated ChIPseq, 4Cseq and RNAseq data on striatal tissue of HD and control mice during striatum-dependent egocentric memory process. Multi-omics analyses showed altered activity-dependent epigenetic gene reprogramming of neuronal and glial genes regulating striatal plasticity in HD mice, which correlated with memory deficit. First, our data reveal that spatial chromatin re-organization and transcriptional induction of BDNF-related markers, regulating neuronal plasticity, were reduced since memory acquisition in the striatum of HD mice. Second, our data show that epigenetic memory implicating H3K9 acetylation, which established during late phase of memory process (e.g. during consolidation/recall) and contributed to glia-mediated, TGFß-dependent plasticity, was compromised in HD mouse striatum. Specifically, memory-dependent regulation of H3K9 acetylation was impaired at genes controlling extracellular matrix and myelination. Our study investigating the interplay between epigenetics and memory identifies H3K9 acetylation and TGFß signaling as new targets of striatal plasticity, which might offer innovative leads to improve HD.


Assuntos
Doença de Huntington , Camundongos , Animais , Doença de Huntington/genética , Acetilação , Modelos Animais de Doenças , Corpo Estriado , Fator de Crescimento Transformador beta
4.
Cancer Lett ; 543: 215765, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35680072

RESUMO

Neuroendocrine tumors constitute a heterogeneous group of tumors arising from hormone-secreting cells and are generally associated with a dysfunction of secretion. Pheochromocytoma (Pheo) is a neuroendocrine tumor that develops from chromaffin cells of the adrenal medulla, and is responsible for an excess of catecholamine secretion leading to severe clinical symptoms such as hypertension, elevated stroke risk and various cardiovascular complications. Surprisingly, while the hypersecretory activity of Pheo is well known to pathologists and clinicians, it has never been carefully explored at the cellular and molecular levels. In the present study, we have combined catecholamine secretion measurement by carbon fiber amperometry on human tumor cells directly cultured from freshly resected Pheos, with the analysis by mass spectrometry of the exocytotic proteins differentially expressed between the tumor and the matched adjacent non-tumor tissue. In most patients, catecholamine secretion recordings from single Pheo cells revealed a higher number of exocytic events per cell associated with faster kinetic parameters. Accordingly, we unravel significant tumor-associated modifications in the expression of key proteins involved in different steps of the calcium-regulated exocytic pathway. Altogether, our findings indicate that dysfunction of the calcium-regulated exocytosis at the level of individual Pheo cell is a cause of the tumor-associated hypersecretion of catecholamines.


Assuntos
Neoplasias das Glândulas Suprarrenais , Medula Suprarrenal , Feocromocitoma , Neoplasias das Glândulas Suprarrenais/metabolismo , Medula Suprarrenal/metabolismo , Cálcio , Cálcio da Dieta , Catecolaminas/metabolismo , Exocitose , Humanos , Feocromocitoma/metabolismo
5.
Cells ; 8(6)2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31142037

RESUMO

The management of patients with colorectal cancer (CRC) and potentially resectable liver metastases (LM) requires quick assessment of mutational status and of response to pre-operative systemic therapy. In a prospective phase II trial (NCT01442935), we investigated the clinical validity of circulating tumor cell (CTC) and circulating tumor DNA (ctDNA) detection. CRC patients with potentially resectable LM were treated with first-line triplet or doublet chemotherapy combined with targeted therapy. CTC (Cellsearch®) and Kirsten RAt Sarcoma (KRAS) ctDNA (droplet digital polymerase chain reaction (PCR)) levels were assessed at inclusion, after 4 weeks of therapy and before LM surgery. 153 patients were enrolled. The proportion of patients with high CTC counts (≥3 CTC/7.5mL) decreased during therapy: 19% (25/132) at baseline, 3% (3/108) at week 4 and 0/57 before surgery. ctDNA detection sensitivity at baseline was 91% (N=42/46) and also decreased during treatment. Interestingly, persistently detectable KRAS ctDNA (p=0.01) at 4 weeks was associated with a lower R0/R1 LM resection rate. Among patients who had a R0/R1 LM resection, those with detectable ctDNA levels before liver surgery had a shorter overall survival (p<0.001). In CRC patients with limited metastatic spread, ctDNA could be used as liquid biopsy tool. Therefore, ctDNA detection could help to select patients eligible for LM resection.


Assuntos
DNA Tumoral Circulante/sangue , Neoplasias Colorretais/sangue , Neoplasias Colorretais/patologia , Células Neoplásicas Circulantes/patologia , Adulto , Idoso , Neoplasias Colorretais/cirurgia , Humanos , Estimativa de Kaplan-Meier , Biópsia Líquida , Pessoa de Meia-Idade , Mutação/genética , Metástase Neoplásica , Estudos Prospectivos , Proteínas Proto-Oncogênicas p21(ras)/genética , Resultado do Tratamento
6.
Cancers (Basel) ; 11(3)2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30901876

RESUMO

This study was designed to monitor circulating tumor DNA (ctDNA) levels during perioperative chemotherapy in patients with non-metastatic gastric adenocarcinoma. Plasma samples were prospectively collected in patients undergoing perioperative chemotherapy for non-metastatic gastric adenocarcinoma (excluding T1N0) prior to the initiation of perioperative chemotherapy, before and after surgery (NCT02220556). In each patient, mutations retrieved by targeted next-generation sequencing (NGS) on tumor samples were then tracked in circulating cell-free DNA from 4 mL of plasma by droplet digital PCR. Thirty-two patients with a diagnosis of non-metastatic gastric adenocarcinoma were included. A trackable mutation was identified in the tumor in 20 patients, seven of whom experienced relapse during follow-up. ctDNA was detectable in four patients (N = 4/19, sensitivity: 21%; 95% confidence interval CI = 8.5⁻43%, no baseline plasma sample was available for one patient), with a median allelic frequency (MAF) of 1.6% (range: 0.8⁻2.3%). No patient with available plasma samples (N = 0/18) had detectable ctDNA levels before surgery. After surgery, one of the 13 patients with available plasma samples had a detectable ctDNA level with a low allelic frequency (0.7%); this patient experienced a very short-term distant relapse only 3 months after surgery. No ctDNA was detected after surgery in the other four patients with available plasma samples who experienced a later relapse (median = 14.4, range: 9.3⁻26 months). ctDNA monitoring during preoperative chemotherapy and after surgery does not appear to be a useful tool in clinical practice for non-metastatic gastric cancer to predict the efficacy of chemotherapy and subsequent relapse, essentially due to the poor sensitivity of ctDNA detection.

7.
J Vis Exp ; (139)2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30320738

RESUMO

Droplet digital polymerase chain reaction (ddPCR) is a highly sensitive quantitative polymerase chain reaction (PCR) method based on sample fractionation into thousands of nano-sized water-in-oil individual reactions. Recently, ddPCR has become one of the most accurate and sensitive tools for circulating tumor DNA (ctDNA) detection. One of the major limitations of the standard ddPCR technique is the restricted number of mutations that can be screened per reaction, as specific hydrolysis probes recognizing each possible allelic version are required. An alternative methodology, the drop-off ddPCR, increases throughput, since it requires only a single pair of probes to detect and quantify potentially all genetic alterations in the targeted region. Drop-off ddPCR displays comparable sensitivity to conventional ddPCR assays with the advantage of detecting a greater number of mutations in a single reaction. It is cost-effective, conserves precious sample material, and can also be used as a discovery tool when mutations are not known a priori.


Assuntos
DNA Tumoral Circulante/metabolismo , Reação em Cadeia da Polimerase/métodos , Humanos , Mutação
8.
Clin Chem ; 64(2): 317-328, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29122835

RESUMO

BACKGROUND: Progress in the liquid biopsy field, combined with the development of droplet digital PCR (ddPCR), has enabled noninvasive monitoring of mutations with high detection accuracy. However, current assays detect a restricted number of mutations per reaction. ddPCR is a recognized method for detecting alterations previously characterized in tumor tissues, but its use as a discovery tool when the mutation is unknown a priori remains limited. METHODS: We established 2 ddPCR assays detecting all genomic alterations within KRAS exon 2 and EGFR exon 19 mutation hotspots, which are of clinical importance in colorectal and lung cancer, with use of a unique pair of TaqMan® oligoprobes. The KRAS assay scanned for the 7 most common mutations in codons 12/13 but also all other mutations found in that region. The EGFR assay screened for all in-frame deletions of exon 19, which are frequent EGFR-activating events. RESULTS: The KRAS and EGFR assays were highly specific and both reached a limit of detection of <0.1% in mutant allele frequency. We further validated their performance on multiple plasma and formalin-fixed and paraffin-embedded tumor samples harboring a panel of different KRAS or EGFR mutations. CONCLUSIONS: This method presents the advantage of detecting a higher number of mutations with single-reaction ddPCRs while consuming a minimum of patient sample. This is particularly useful in the context of liquid biopsy because the amount of circulating tumor DNA is often low. This method should be useful as a discovery tool when the tumor tissue is unavailable or to monitor disease during therapy.


Assuntos
Receptores ErbB/genética , Genes ras , Mutação , Neoplasias/genética , Reação em Cadeia da Polimerase/métodos , Biópsia , DNA Tumoral Circulante/sangue , Humanos , Limite de Detecção , Biópsia Líquida , Sondas Moleculares , Neoplasias/sangue , Neoplasias/patologia
9.
PLoS One ; 12(10): e0186562, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29084234

RESUMO

Circulating tumor cells (CTCs) isolated from blood can be probed for the expression of treatment targets. Immunofluorescence is often used for both the enumeration of CTC and the determination of protein expression levels related to treatment targets. Accurate and reproducible assessment of such treatment target expression levels is essential for their use in the clinic. To enable this, an open source image analysis program named ACCEPT was developed in the EU-FP7 CTCTrap and CANCER-ID programs. Here its application is shown on a retrospective cohort of 132 metastatic breast cancer patients from which blood samples were processed by CellSearch® and stained for HER-2 expression as additional marker. Images were digitally stored and reviewers identified a total of 4084 CTCs. CTC's HER-2 expression was determined in the thumbnail images by ACCEPT. 150 of these images were selected and sent to six independent investigators to score the HER-2 expression with and without ACCEPT. Concordance rate of the operators' scoring results for HER-2 on CTCs was 30% and could be increased using the ACCEPT tool to 51%. Automated assessment of HER-2 expression by ACCEPT on 4084 CTCs of 132 patients showed 8 (6.1%) patients with all CTCs expressing HER-2, 14 (10.6%) patients with no CTC expressing HER-2 and 110 (83.3%) patients with CTCs showing a varying HER-2 expression level. In total 1576 CTCs were determined HER-2 positive. We conclude that the use of image analysis enables a more reproducible quantification of treatment targets on CTCs and leads the way to fully automated and reproducible approaches.


Assuntos
Neoplasias da Mama/sangue , Células Neoplásicas Circulantes/metabolismo , Receptor ErbB-2/metabolismo , Feminino , Humanos
10.
Eur J Cancer ; 63: 97-104, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27289552

RESUMO

There is increasing evidence that breast cancer evolves over time under the selection pressure of systemic treatment. Today, treatment decisions in early breast cancer are based on primary tumour characteristics without considering the disease evolution. Chemoresistant micrometastatic disease is poorly characterised and thus it is not used in current clinical practice as a tool to personalise treatment approaches. The detection of chemoresistant circulating tumour cells (CTCs) has been shown to be associated with worse prognosis in early breast cancer. The ongoing Treat CTC trial is the first international, liquid biopsy-based trial evaluating the concept of targeting chemoresistant minimal residual disease: detection of CTCs following adjuvant chemotherapy (adjuvant cohort) or neoadjuvant chemotherapy in patients who did not achieve pathological complete response (neoadjuvant cohort). This article presents the rational and design of this trial and the results of the pilot phase after 350 patients have been screened and provides insights that might provide information for future trials using the liquid biopsy approach as a tool towards precision medicine (NCT01548677).


Assuntos
Biópsia/métodos , Neoplasias da Mama/diagnóstico , Células Neoplásicas Circulantes/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/análise , Neoplasias da Mama/tratamento farmacológico , Ensaios Clínicos como Assunto , Feminino , Humanos , Pessoa de Meia-Idade , Neoplasia Residual , Projetos Piloto , Valor Preditivo dos Testes , Prognóstico , Trastuzumab/uso terapêutico
11.
Mol Oncol ; 9(4): 783-90, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25579085

RESUMO

Cell-free tumor DNA (ctDNA) has the potential to enable non-invasive diagnostic tests for personalized medicine in providing similar molecular information as that derived from invasive tumor biopsies. The histology-independent phase II SHIVA trial matches patients with targeted therapeutics based on previous screening of multiple somatic mutations using metastatic biopsies. To evaluate the utility of ctDNA in this trial, as an ancillary study we performed de novo detection of somatic mutations using plasma DNA compared to metastasis biopsies in 34 patients covering 18 different tumor types, scanning 46 genes and more than 6800 COSMIC mutations with a multiplexed next-generation sequencing panel. In 27 patients, 28 of 29 mutations identified in metastasis biopsies (97%) were detected in matched ctDNA. Among these 27 patients, one additional mutation was found in ctDNA only. In the seven other patients, mutation detection from metastasis biopsy failed due to inadequate biopsy material, but was successful in all plasma DNA samples providing three more potential actionable mutations. These results suggest that ctDNA analysis is a potential alternative and/or replacement to analyses using costly, harmful and lengthy tissue biopsies of metastasis, irrespective of cancer type and metastatic site, for multiplexed mutation detection in selecting personalized therapies based on the patient's tumor genetic content.


Assuntos
DNA de Neoplasias/sangue , Técnicas de Genotipagem , Neoplasias/genética , Neoplasias/patologia , Células Neoplásicas Circulantes/metabolismo , Medicina de Precisão , Idoso , Idoso de 80 Anos ou mais , Biópsia , DNA de Neoplasias/metabolismo , Feminino , Frequência do Gene/genética , Humanos , Pessoa de Meia-Idade , Mutação/genética , Metástase Neoplásica , Neoplasias/metabolismo , Células Neoplásicas Circulantes/patologia
12.
Oncotarget ; 5(14): 5736-49, 2014 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-25026278

RESUMO

H-Prune hydrolyzes short-chain polyphosphates (PPase activity) together with an hitherto cAMP-phosphodiesterase (PDE), the latest influencing different human cancers by its overexpression. H-Prune promotes cell migration in cooperation with glycogen synthase kinase-3 (Gsk-3ß). Gsk-3ß is a negative regulator of canonical WNT/ß-catenin signaling. Here, we investigate the role of Gsk-3ß/h-Prune complex in the regulation of WNT/ß-catenin signaling, demonstrating the h-Prune capability to activate WNT signaling also in a paracrine manner, through Wnt3a secretion. In vivo study demonstrates that h-Prune silencing inhibits lung metastasis formation, increasing mouse survival. We assessed h-Prune levels in peripheral blood of lung cancer patients using ELISA assay, showing that h-Prune is an early diagnostic marker for lung cancer. Our study dissects out the mechanism of action of h-Prune in tumorigenic cells and also sheds light on the identification of a new therapeutic target in non-small-cell lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteínas de Transporte/sangue , Quinase 3 da Glicogênio Sintase/metabolismo , Neoplasias Pulmonares/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas de Transporte/genética , Progressão da Doença , Feminino , Glicogênio Sintase Quinase 3 beta , Xenoenxertos , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Monoéster Fosfórico Hidrolases , beta Catenina/genética
13.
Carcinogenesis ; 35(1): 2-13, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23955540

RESUMO

Wnt signaling plays a central role in mammary stem cell (MaSC) homeostasis and in breast cancer. In particular, epigenetic alterations at different members of the Wnt pathway have been identified among triple-negative, basal-like breast cancers. Previously, we developed a mouse model for metaplastic breast adenocarcinoma, a subtype of triple-negative breast cancer, by targeting a hypomorphic mutations in the endogenous Apc gene (Apc (1572T/+)). Here, by employing the CD24 and CD29 cell surface antigens, we have identified a subpopulation of mammary cancer stem cells (MaCSCs) from Apc (1572T/+) capable of self-renewal and differentiation both in vivo and in vitro. Moreover, immunohistochemical analysis of micro- and macrolung metastases and preliminary intravenous transplantation assays suggest that the MaCSCs underlie metastasis at distant organ sites. Expression profiling of the normal and tumor cell subpopulations encompassing MaSCs and CSCs revealed that the normal stem cell compartment is more similar to tumor cells than to their own differentiated progenies. Accordingly, Wnt signaling appears to be active in both the normal and cancer stem cell compartments, although at different levels. By comparing normal with cancer mouse mammary compartments, we identified a MaCSC gene signature able to predict outcome in breast cancer in man. Overall, our data indicate that constitutive Wnt signaling activation affects self-renewal and differentiation of MaSCs leading to metaplasia and basal-like adenocarcinomas.


Assuntos
Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Células-Tronco Neoplásicas/patologia , Via de Sinalização Wnt/fisiologia , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Antígeno CD24/metabolismo , Diferenciação Celular , Feminino , Humanos , Integrina beta1/metabolismo , Glândulas Mamárias Animais/citologia , Camundongos , Camundongos Transgênicos , Células-Tronco Neoplásicas/metabolismo , Valor Preditivo dos Testes , Valores de Referência , Transcriptoma , Proteína Wnt1/genética , Proteína Wnt1/metabolismo
14.
Mol Cancer ; 12(1): 132, 2013 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-24171719

RESUMO

BACKGROUND: Basal-like breast cancer is a heterogeneous disease characterized by the expression of basal cell markers, no estrogen or progesterone receptor expression and a lack of HER2 overexpression. Recent studies have linked activation of the Wnt/ß-catenin pathway, and its downstream target, Myc, to basal-like breast cancer. Transgenic mice K5ΔNßcat previously generated by our team present a constitutive activation of Wnt/ß-catenin signaling in the basal myoepithelial cell layer, resulting in focal mammary hyperplasias that progress to invasive carcinomas. Mammary lesions developed by K5ΔNßcat mice consist essentially of basal epithelial cells that, in contrast to mammary myoepithelium, do not express smooth muscle markers. METHODS: Microarray analysis was used to compare K5ΔNßcat mouse tumors to human breast tumors, mammary cancer cell lines and the tumors developed in other mouse models. Cre-Lox approach was employed to delete Myc from the mammary basal cell layer of K5ΔNßcat mice. Stem cell amplification in K5ΔNßcat mouse mammary epithelium was assessed with 3D-culture and transplantation assays. RESULTS: Histological and microarray analyses of the mammary lesions of K5ΔNßcat females revealed their high similarity to a subset of basal-like human breast tumors with squamous differentiation. As in human basal-like carcinomas, the Myc pathway appeared to be activated in the mammary lesions of K5ΔNßcat mice. We found that a basal cell population with stem/progenitor characteristics was amplified in K5ΔNßcat mouse preneoplastic glands. Finally, the deletion of Myc from the mammary basal layer of K5ΔNßcat mice not only abolished the regenerative capacity of basal epithelial cells, but, in addition, completely prevented the tumorigenesis. CONCLUSIONS: These results strongly indicate that ß-catenin-induced stem cell amplification and tumorigenesis rely ultimately on the Myc pathway activation and reinforce the hypothesis that basal stem/progenitor cells may be at the origin of a subset of basal-like breast tumors.


Assuntos
Neoplasias Mamárias Experimentais/metabolismo , Células-Tronco Neoplásicas/fisiologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , beta Catenina/metabolismo , Animais , Carcinogênese/metabolismo , Células Epiteliais/metabolismo , Feminino , Humanos , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transplante de Neoplasias , Proteínas Proto-Oncogênicas c-myc/genética , Deleção de Sequência , Células Tumorais Cultivadas , Via de Sinalização Wnt , beta Catenina/genética
15.
PLoS Genet ; 9(5): e1003424, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23658527

RESUMO

Canonical Wnt signaling plays a rate-limiting role in regulating self-renewal and differentiation in mouse embryonic stem cells (ESCs). We have previously shown that mutation in the Apc (adenomatous polyposis coli) tumor suppressor gene constitutively activates Wnt signaling in ESCs and inhibits their capacity to differentiate towards ecto-, meso-, and endodermal lineages. However, the underlying molecular and cellular mechanisms through which Wnt regulates lineage differentiation in mouse ESCs remain to date largely unknown. To this aim, we have derived and studied the gene expression profiles of several Apc-mutant ESC lines encoding for different levels of Wnt signaling activation. We found that down-regulation of Tcf3, a member of the Tcf/Lef family and a key player in the control of self-renewal and pluripotency, represents a specific and primary response to Wnt activation in ESCs. Accordingly, rescuing Tcf3 expression partially restored the neural defects observed in Apc-mutant ESCs, suggesting that Tcf3 down-regulation is a necessary step towards Wnt-mediated suppression of neural differentiation. We found that Tcf3 down-regulation in the context of constitutively active Wnt signaling does not result from promoter DNA methylation but is likely to be caused by a plethora of mechanisms at both the RNA and protein level as shown by the observed decrease in activating histone marks (H3K4me3 and H3-acetylation) and the upregulation of miR-211, a novel Wnt-regulated microRNA that targets Tcf3 and attenuates early neural differentiation in mouse ESCs. Our data show for the first time that Wnt signaling down-regulates Tcf3 expression, possibly at both the transcriptional and post-transcriptional levels, and thus highlight a novel mechanism through which Wnt signaling inhibits neuro-ectodermal lineage differentiation in mouse embryonic stem cells.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular , Células-Tronco Embrionárias/fisiologia , Via de Sinalização Wnt , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem da Célula , Metilação de DNA , Regulação para Baixo , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Mutação , Transcrição Gênica
16.
Semin Cancer Biol ; 22(3): 250-60, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22459768

RESUMO

Despite advances in chemotherapy, hormone therapy and radiotherapy, not all cancer patients respond favorably to treatment. However, progress in understanding the mechanisms of malignant diseases and the mode of action of therapies are opening opportunities to match treatment to specific patient subpopulations, paving the way for personalized medicine. In this context, high throughput technologies that have been developed to determine gene expression profiles potentially offer an effective tool for dissecting the biology of cancer pathologies, for identifying candidate molecules for the development of new drugs, and for identifying individual patients who are more likely to respond favorably to a given therapy. Here, we overview and discuss the robustness of the deployment of these technologies in these contexts. We conclude that while these technologies are useful for target identification, there are limitations to their use in understanding cancer biology and in routine clinical application.


Assuntos
Perfilação da Expressão Gênica , Neoplasias/genética , Análise de Sequência com Séries de Oligonucleotídeos , Humanos , Neoplasias/classificação , Neoplasias/diagnóstico , Células-Tronco Neoplásicas/classificação , Medicina de Precisão
17.
Semin Cancer Biol ; 22(3): 174-86, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22374376

RESUMO

The ability of tumor cells to leave a primary tumor, to disseminate through the body, and to ultimately seed new secondary tumors is universally agreed to be the basis for metastasis formation. An accurate description of the cellular and molecular mechanisms that underlie this multistep process would greatly facilitate the rational development of therapies that effectively allow metastatic disease to be controlled and treated. A number of disparate and sometimes conflicting hypotheses and models have been suggested to explain various aspects of the process, and no single concept explains the mechanism of metastasis in its entirety or encompasses all observations and experimental findings. The exciting progress made in metastasis research in recent years has refined existing ideas, as well as giving rise to new ones. In this review we survey some of the main theories that currently exist in the field, and show that significant convergence is emerging, allowing a synthesis of several models to give a more comprehensive overview of the process of metastasis. As a result we postulate a stromal progression model of metastasis. In this model, progressive modification of the tumor microenvironment is equally as important as genetic and epigenetic changes in tumor cells during primary tumor progression. Mutual regulatory interactions between stroma and tumor cells modify the stemness of the cells that drive tumor growth, in a manner that involves epithelial-mesenchymal and mesenchymal-epithelial-like transitions. Similar interactions need to be recapitulated at secondary sites for metastases to grow. Early disseminating tumor cells can progress at the secondary site in parallel to the primary tumor, both in terms of genetic changes, as well as progressive development of a metastatic stroma. Although this model brings together many ideas in the field, there remain nevertheless a number of major open questions, underscoring the need for further research to fully understand metastasis, and thereby identify new and effective ways of treating metastatic disease.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Matriz Extracelular/genética , Células-Tronco Mesenquimais/metabolismo , Metástase Neoplásica/patologia , Neoplasias/patologia , Células-Tronco Neoplásicas/metabolismo , Microambiente Tumoral/fisiologia , Hibridização Genômica Comparativa , Progressão da Doença , Matriz Extracelular/metabolismo , Expressão Gênica , Humanos , Metástase Neoplásica/genética , Metástase Neoplásica/fisiopatologia
18.
Breast Cancer Res ; 14(1): R11, 2012 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-22247967

RESUMO

INTRODUCTION: Identification of new therapeutic agents for breast cancer (BC) requires preclinical models that reproduce the molecular characteristics of their respective clinical tumors. In this work, we analyzed the genomic and gene expression profiles of human BC xenografts and the corresponding patient tumors. METHODS: Eighteen BC xenografts were obtained by grafting tumor fragments from patients into Swiss nude mice. Molecular characterization of patient tumors and xenografts was performed by DNA copy number analysis and gene expression analysis using Affymetrix Microarrays. RESULTS: Comparison analysis showed that 14/18 pairs of tumors shared more than 56% of copy number alterations (CNA). Unsupervised hierarchical clustering analysis showed that 16/18 pairs segregated together, confirming the similarity between tumor pairs. Analysis of recurrent CNA changes between patient tumors and xenografts showed losses in 176 chromosomal regions and gains in 202 chromosomal regions. Gene expression profile analysis showed that less than 5% of genes had recurrent variations between patient tumors and their respective xenografts; these genes largely corresponded to human stromal compartment genes. Finally, analysis of different passages of the same tumor showed that sequential mouse-to-mouse tumor grafts did not affect genomic rearrangements or gene expression profiles, suggesting genetic stability of these models over time. CONCLUSIONS: This panel of human BC xenografts maintains the overall genomic and gene expression profile of the corresponding patient tumors and remains stable throughout sequential in vivo generations. The observed genomic profile and gene expression differences appear to be due to the loss of human stromal genes. These xenografts, therefore, represent a validated model for preclinical investigation of new therapeutic agents.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Transcriptoma , Animais , Análise por Conglomerados , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA , Feminino , Instabilidade Genômica , Humanos , Camundongos , Camundongos Nus , Transplante de Neoplasias , Análise de Sequência com Séries de Oligonucleotídeos , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Transplante Heterólogo
19.
PLoS One ; 6(10): e26073, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22022511

RESUMO

BACKGROUND: Preclinical models of non-small cell lung cancer (NSCLC) require better clinical relevance to study disease mechanisms and innovative therapeutics. We sought to compare and refine bioluminescent orthotopic mouse models of human localized NSCLC. METHODS: Athymic nude mice underwent subcutaneous injection (group 1-SC, n = 15, control), percutaneous orthotopic injection (group 2-POI, n = 30), surgical orthotopic implantation of subcutaneously grown tumours (group 3-SOI, n = 25), or transpleural orthotopic injection (group 4-TOI, n = 30) of A549-luciferase cells. Bioluminescent in vivo imaging was then performed weekly. Circulating tumour cells (CTCs) were searched using Cellsearch® system in SC and TOI models. RESULTS: Group 2-POI was associated with unexpected direct pleural spreading of the cellular solution in 53% of the cases, forbidding further evaluation of any localized lung tumour. Group 3-SOI was characterized by high perioperative mortality, initially localized lung tumours, and local evolution. Group 4-TOI was associated with low perioperative mortality, initially localized lung tumours, loco regional extension, and distant metastasis. CTCs were detected in 83% of nude mice bearing subcutaneous or orthotopic NSCLC tumours. CONCLUSIONS: Transpleural orthotopic injection of A549-luc cells in nude mouse lung induces localized tumour, followed by lymphatic extension and specific mortality, and allowed the first time identification of CTCs in a NSCLC mice model.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Medições Luminescentes/métodos , Neoplasias Pulmonares/patologia , Células Neoplásicas Circulantes/patologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Estudos de Viabilidade , Feminino , Seguimentos , Humanos , Camundongos , Transplante de Neoplasias , Análise de Sobrevida
20.
BMC Cancer ; 10: 222, 2010 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-20492709

RESUMO

BACKGROUND: The distinction between primary and secondary ovarian tumors may be challenging for pathologists. The purpose of the present work was to develop genomic and transcriptomic tools to further refine the pathological diagnosis of ovarian tumors after a previous history of breast cancer. METHODS: Sixteen paired breast-ovary tumors from patients with a former diagnosis of breast cancer were collected. The genomic profiles of paired tumors were analyzed using the Affymetrix GeneChip Mapping 50 K Xba Array or Genome-Wide Human SNP Array 6.0 (for one pair), and the data were normalized with ITALICS (ITerative and Alternative normaLIzation and Copy number calling for affymetrix Snp arrays) algorithm or Partek Genomic Suite, respectively. The transcriptome of paired samples was analyzed using Affymetrix GeneChip Human Genome U133 Plus 2.0 Arrays, and the data were normalized with gc-Robust Multi-array Average (gcRMA) algorithm. A hierarchical clustering of these samples was performed, combined with a dataset of well-identified primary and secondary ovarian tumors. RESULTS: In 12 of the 16 paired tumors analyzed, the comparison of genomic profiles confirmed the pathological diagnosis of primary ovarian tumor (n = 5) or metastasis of breast cancer (n = 7). Among four cases with uncertain pathological diagnosis, genomic profiles were clearly distinct between the ovarian and breast tumors in two pairs, thus indicating primary ovarian carcinomas, and showed common patterns in the two others, indicating metastases from breast cancer. In all pairs, the result of the transcriptomic analysis was concordant with that of the genomic analysis. CONCLUSIONS: In patients with ovarian carcinoma and a previous history of breast cancer, SNP array analysis can be used to distinguish primary and secondary ovarian tumors. Transcriptomic analysis may be used when primary breast tissue specimen is not available.


Assuntos
Neoplasias da Mama/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Testes Genéticos/métodos , Segunda Neoplasia Primária/genética , Análise de Sequência com Séries de Oligonucleotídeos , Neoplasias Ovarianas/genética , Polimorfismo de Nucleotídeo Único , Adulto , Idoso , Algoritmos , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Análise por Conglomerados , Diagnóstico Diferencial , Feminino , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Segunda Neoplasia Primária/diagnóstico , Segunda Neoplasia Primária/patologia , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/secundário , Valor Preditivo dos Testes , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...