Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(48): eadk6191, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38039358

RESUMO

Mutations in leucine-rich repeat kinase 2 (LRRK2) are a common cause of familial Parkinson's disease (PD) and a risk factor for the sporadic form. Increased kinase activity was shown in patients with both familial and sporadic PD, making LRRK2 kinase inhibitors a major focus of drug development efforts. Although much progress has been made in understanding the structural biology of LRRK2, there are no available structures of LRRK2 inhibitor complexes. To this end, we solved cryo-electron microscopy structures of LRRK2, wild-type and PD-linked mutants, bound to the LRRK2-specific type I inhibitor MLi-2 and the broad-spectrum type II inhibitor GZD-824. Our structures revealed an active-like LRRK2 kinase in the type I inhibitor complex, and an inactive DYG-out in the type II inhibitor complex. Our structural analysis also showed how inhibitor-induced conformational changes in LRRK2 are affected by its autoinhibitory N-terminal repeats. The structures provide a template for the rational development of LRRK2 kinase inhibitors covering both canonical inhibitor binding modes.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Microscopia Crioeletrônica , Fosforilação , Mutação
2.
Methods Enzymol ; 667: 663-683, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35525558

RESUMO

Pseudokinases play significant roles in disease development. Similar to active kinases, their cellular functions can be targeted pharmacologically. But notably, instead of inhibiting an enzymatic activity, drug-like molecules act by stabilizing distinct pseudokinase conformations, by interfering with protein interactions, or by inducing proteasomal degradation. Herein, we describe our approach of enabling particular pseudokinases as potential drug targets. The method starts with obtaining recombinant proteins for assay development and for biochemical evaluation. The next step is to probe the pseudoactive site as a binding pocket for small molecules, providing initial insight into binding modes and even candidate chemotypes. Finally, structural features of pseudokinase:inhibitor complexes are explored. Taken together, we provide detailed method descriptions for essential inhibitor development technologies.


Assuntos
Conformação Molecular
3.
Cells ; 11(1)2022 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-35011704

RESUMO

Malfunction of the actin cytoskeleton is linked to numerous human diseases including neurological disorders and cancer. LIMK1 (LIM domain kinase 1) and its paralogue LIMK2 are two closely related kinases that control actin cytoskeleton dynamics. Consequently, they are potential therapeutic targets for the treatment of such diseases. In the present review, we describe the LIMK conformational space and its dependence on ligand binding. Furthermore, we explain the unique catalytic mechanism of the kinase, shedding light on substrate recognition and how LIMK activity is regulated. The structural features are evaluated for implications on the drug discovery process. Finally, potential future directions for targeting LIMKs pharmacologically, also beyond just inhibiting the kinase domain, are discussed.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Quinases Lim/metabolismo , Quinases Lim/farmacologia , Fosforilação/fisiologia , Humanos , Modelos Moleculares
4.
J Med Chem ; 65(2): 1313-1328, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34333981

RESUMO

The pyrimidine core has been utilized extensively to construct kinase inhibitors, including eight FDA-approved drugs. Because the pyrimidine hinge-binding motif is accommodated by many human kinases, kinome-wide selectivity of resultant molecules can be poor. This liability was seen as an advantage since it is well tolerated by many understudied kinases. We hypothesized that nonexemplified aminopyrimidines bearing side chains from well-annotated pyrimidine-based inhibitors with off-target activity on understudied kinases would provide us with useful inhibitors of these lesser studied kinases. Our strategy paired mixing and matching the side chains from the 2- and 4-positions of the parent compounds with modifications at the 5-position of the pyrimidine core, which is situated near the gatekeeper residue of the binding pocket. Utilizing this approach, we imparted improved kinome-wide selectivity to most members of the resultant library. Importantly, we also identified potent biochemical and cell-active lead compounds for understudied kinases like DRAK1, BMP2K, and MARK3/4.


Assuntos
Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Pirimidinas/química , Sítios de Ligação , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/enzimologia , Relação Estrutura-Atividade
5.
Trends Cell Biol ; 31(11): 898-911, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34147299

RESUMO

Precise distribution of proteins is essential to sustain the viability of cells. A complex network of protein synthesis and targeting factors cooperate with protein quality control systems to ensure protein homeostasis. Defective proteins are inevitably degraded by the ubiquitin-proteasome system and lysosomes. However, due to overlapping targeting information and limited targeting fidelity, certain proteins become mislocalized. In this review, we present the idea that transmembrane dislocases recognize and remove mislocalized membrane proteins from cellular organelles. This enables other targeting attempts and prevents degradation of mislocalized but otherwise functional proteins. These transmembrane dislocases can be found in the outer mitochondrial membrane (OMM) and endoplasmic reticulum (ER). We highlight common principles regarding client recognition and outline open questions in our understanding of transmembrane dislocases.


Assuntos
Retículo Endoplasmático , Membranas Mitocondriais , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Membranas Mitocondriais/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Transporte Proteico
6.
J Cell Sci ; 132(16)2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31416853

RESUMO

Over the last two decades, a group of unusual proteases, so-called intramembrane proteases, have become increasingly recognized for their unique ability to cleave peptide bonds within cellular membranes. They are found in all kingdoms of life and fulfil versatile functions ranging from protein maturation, to activation of signalling molecules, to protein degradation. In this Cell Science at a Glance article and the accompanying poster, we focus on intramembrane proteases in mammalian cells. By comparing intramembrane proteases in different cellular organelles, we set out to review their functions within the context of the roles of individual cellular compartments. Additionally, we exemplify their mode of action in relation to known substrates by distinguishing cleavage events that promote degradation of substrate from those that release active domains from the membrane bilayer.


Assuntos
Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Peptídeo Hidrolases/metabolismo , Proteólise , Animais , Humanos
7.
Elife ; 82019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31172943

RESUMO

Tail-anchored (TA) proteins insert post-translationally into the endoplasmic reticulum (ER), the outer mitochondrial membrane (OMM) and peroxisomes. Whereas the GET pathway controls ER-targeting, no dedicated factors are known for OMM insertion, posing the question of how accuracy is achieved. The mitochondrial AAA-ATPase Msp1 removes mislocalized TA proteins from the OMM, but it is unclear, how Msp1 clients are targeted for degradation. Here we screened for factors involved in degradation of TA proteins mislocalized to mitochondria. We show that the ER-associated degradation (ERAD) E3 ubiquitin ligase Doa10 controls cytoplasmic level of Msp1 clients. Furthermore, we identified the uncharacterized OMM protein Fmp32 and the ectopically expressed subunit of the ER-mitochondria encounter structure (ERMES) complex Gem1 as native clients for Msp1 and Doa10. We propose that productive localization of TA proteins to the OMM is ensured by complex assembly, while orphan subunits are extracted by Msp1 and eventually degraded by Doa10.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Transporte de Ânions/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
8.
EMBO Rep ; 20(3)2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30733280

RESUMO

Signal peptide peptidase (SPP) and the four homologous SPP-like (SPPL) proteases constitute a family of intramembrane aspartyl proteases with selectivity for type II-oriented transmembrane segments. Here, we analyse the physiological function of the orphan protease SPPL2c, previously considered to represent a non-expressed pseudogene. We demonstrate proteolytic activity of SPPL2c towards selected tail-anchored proteins. Despite shared ER localisation, SPPL2c and SPP exhibit distinct, though partially overlapping substrate spectra and inhibitory profiles, and are organised in different high molecular weight complexes. Interestingly, SPPL2c is specifically expressed in murine and human testis where it is primarily localised in spermatids. In mice, SPPL2c deficiency leads to a partial loss of elongated spermatids and reduced motility of mature spermatozoa, but preserved fertility. However, matings of male and female SPPL2c-/- mice exhibit reduced litter sizes. Using proteomics we identify the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2)-regulating protein phospholamban (PLN) as a physiological SPPL2c substrate. Accumulation of PLN correlates with a decrease in intracellular Ca2+ levels in elongated spermatids that likely contribute to the compromised male germ cell differentiation and function of SPPL2c-/- mice.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Membrana Celular/enzimologia , Células Germinativas/metabolismo , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Animais , Ácido Aspártico Endopeptidases/química , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Feminino , Células HEK293 , Células HeLa , Homeostase , Humanos , Masculino , Proteínas de Membrana/química , Camundongos , Especificidade de Órgãos , Espermátides/metabolismo , Especificidade por Substrato , Testículo/enzimologia
9.
Nat Methods ; 15(8): 598-600, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29988096

RESUMO

Here we describe a C-SWAT library for high-throughput tagging of Saccharomyces cerevisiae open reading frames (ORFs). In 5,661 strains, we inserted an acceptor module after each ORF that can be efficiently replaced with tags or regulatory elements. We validated the library with targeted sequencing and tagged the proteome with bright fluorescent proteins to quantify the effect of heterologous transcription terminators on protein expression and to localize previously undetected proteins.


Assuntos
Genoma Fúngico , Biblioteca Genômica , Saccharomyces cerevisiae/genética , DNA Fúngico/genética , Sequenciamento de Nucleotídeos em Larga Escala , Fases de Leitura Aberta , Proteoma/genética , Proteômica , Proteínas de Saccharomyces cerevisiae/genética , Análise de Sequência de DNA , Sitios de Sequências Rotuladas
10.
Science ; 357(6350)2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28774900

RESUMO

During terminal differentiation, the global protein complement is remodeled, as epitomized by erythrocytes, whose cytosol is ~98% globin. The erythroid proteome undergoes a rapid transition at the reticulocyte stage; however, the mechanisms driving programmed elimination of preexisting cytosolic proteins are unclear. We found that a mutation in the murine Ube2o gene, which encodes a ubiquitin-conjugating enzyme induced during erythropoiesis, results in anemia. Proteomic analysis suggested that UBE2O is a broad-spectrum ubiquitinating enzyme that remodels the erythroid proteome. In particular, ribosome elimination, a hallmark of reticulocyte differentiation, was defective in Ube2o-/- mutants. UBE2O recognized ribosomal proteins and other substrates directly, targeting them to proteasomes for degradation. Thus, in reticulocytes, the induction of ubiquitinating factors may drive the transition from a complex to a simple proteome.


Assuntos
Células Eritroides/citologia , Eritropoese/fisiologia , Proteínas Ribossômicas/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação , Anemia/genética , Anemia Hipocrômica/genética , Animais , Eritrócitos/citologia , Eritrócitos/enzimologia , Células Eritroides/enzimologia , Eritropoese/genética , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mutação , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteoma/metabolismo , Proteômica , Reticulócitos/citologia , Reticulócitos/enzimologia , Ribossomos/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Globinas beta/genética , Globinas beta/metabolismo
11.
Front Microbiol ; 7: 179, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26955366

RESUMO

Pseudomonas aeruginosa has emerged as an important opportunistic human pathogen that is often highly resistant to eradication strategies, mediated in part by the formation of multicellular aggregates. Cellular aggregates may occur attached to a surface (biofilm), at the air-liquid interface (pellicle), or as suspended aggregates. Compared to surface attached communities, knowledge about the regulatory processes involved in the formation of suspended cell aggregates is still limited. We have recently described the SiaA/D signal transduction module that regulates macroscopic cell aggregation during growth with, or in the presence of the surfactant SDS. Targets for SiaA/D mediated regulation include the Psl polysaccharide, the CdrAB two-partner secretion system and the CupA fimbriae. While the global regulators c-di-GMP and RsmA are known to inversely coordinate cell aggregation and regulate the expression of several adhesins, their potential impact on the expression of the cupA operon remains unknown. Here, we investigated the function of SiaA (a putative ser/thr phosphatase) and SiaD (a di-guanylate cyclase) in cupA1 expression using transcriptional reporter fusions and qRT-PCR. These studies revealed a novel interaction between the RsmA posttranscriptional regulatory system and SiaA/D mediated macroscopic aggregation. The RsmA/rsmY/Z system was found to affect macroscopic aggregate formation in the presence of surfactant by impacting the stability of the cupA1 mRNA transcript and we reveal that RsmA directly binds to the cupA1 leader sequence in vitro. We further identified that transcription of the RsmA antagonist rsmZ is controlled in a SiaA/D dependent manner during growth with SDS. Finally, we found that the siaD transcript is also under regulatory control of RsmA and that overproduction of RsmA or the deletion of siaD results in decreased cellular cyclic di-guanosine monophosphate (c-di-GMP) levels quantified by a transcriptional reporter, demonstrating that SiaA/D connects c-di-GMP and RsmA/rsmY/Z signaling to reciprocally regulate cell aggregation in response to environmental conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...