Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Braz J Microbiol ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38807020

RESUMO

The present study aimed to evaluate the antimicrobial and modulating activity of the ethanol extract obtained from the leaves, stems, and roots of Cnidoscolus urens in multiresistant bacteria. The Minimum Inhibitory Concentration (MIC) values obtained for the extracts of leaves, stems, and roots were greater than 1024 µg/mL for all isolates. In the antimicrobial resistance modulation test, the extract of the leaves of C. urens showed a better modulating effect than that of the stems and roots for gentamicin, highlighting the reduction of MIC for Escherichia coli, Lactococcus garvieae and Staphylococcus sciuri. For erythromycin, a reduction of MIC was observed in L. garvieae, Staphylococcus aureus, Staphylococcus epidermidis, and Streptococcus agalactiae. The extract from the leaves of C. urens has an important modulating effect on resistance in multiresistant bacteria, especially with gentamicin and erythromycin.

2.
Microb Pathog ; 180: 106164, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37211264

RESUMO

Candida haemulonii is an emergent infectious pathogen that affects human presenting comorbidities and/or immunodepression. Little is known about other possible hosts. For the first time, this fungus was found causing a cutaneous infection in a snake, Boa constrictor, characterized by scale opacity and several ulcerative lesions. This C. haemulonii was isolated, identified using molecular techniques and a phylogenetic study, and had its growth totally inhibited by all the drugs tested; however, no fungicide effect was seen for fluconazole and itraconazole. The B. constrictor clinical signals subsided after a treatment using a biogenic silver nanoparticle-based ointment. These findings, along with the B. constrictor presence near human habitats, warn for the necessity of wildlife health monitoring for emergent and opportunistic diseases in peri-urban environments.


Assuntos
Boidae , Candidíase , Nanopartículas Metálicas , Animais , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida , Filogenia , Candidíase/microbiologia , Prata/farmacologia , Fluconazol/farmacologia , Fluconazol/uso terapêutico , Testes de Sensibilidade Microbiana
3.
BMC Complement Med Ther ; 21(1): 286, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34814913

RESUMO

BACKGROUND: Oral candidiasis is an opportunistic disease caused by fungi of the Candida genus. The occurrence of Candida spp. resistance to the commercial antifungal drugs points to the search for alternative treatments. Propolis has been successfully used in the treatment of infectious diseases for centuries. It has been proposed that an ultrasound pretreatment in the propolis extraction protocol can enhance the concentrations of molecules with antimicrobial activities in the final extract. Thus, this study aimed to compare the antifungal activity against oral Candida spp. isolates of green and red propolis extracts submitted or not to an ultrasound pretreatment before the extraction procedure. METHODS: Candida spp. were isolated from denture stomatitis lesions and identified by sequencing. Oral Candida spp. isolates and reference strains were submitted to broth microdilution assays using commercial antifungals and Brazilian green and red propolis extracts submitted or not to an ultrasound pretreatment. Minimal Inhibitory Concentrations (MIC) and Minimal Fungicide Concentrations (MFC) were determined and biofilm formation interference was evaluated for resistant isolates. RESULTS: C. albicans, Candida tropicalis and Candida dubliniensis were isolated from denture stomatitis lesions. Growth inhibition was observed in all Candida isolates incubated with all green and red propolis extracts. At lower doses, red propolis extracts presented significant antifungal activity. The ultrasound pretreatment did not promote an increase in the antifungal activity of green or red propolis. Three isolates, which were highly resistant to fluconazole and itraconazole, were susceptible to low doses of red propolis extracts. These same three specimens had their biofilm formation inhibted by red propolis ethanolic extract. CONCLUSIONS: Thus, red propolis can be faced as a promising natural product to be used in the auxiliary antifungal therapy of denture stomatitis.


Assuntos
Antifúngicos/farmacologia , Candidíase Bucal/tratamento farmacológico , Extratos Vegetais/farmacologia , Própole/farmacologia , Estomatite sob Prótese/tratamento farmacológico , Fluconazol/farmacologia , Humanos , Itraconazol/farmacologia , Cetoconazol/farmacologia , Testes de Sensibilidade Microbiana
4.
Front Vet Sci ; 6: 460, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921917

RESUMO

Clinical mycoses treatment is associated with issues such as negative side effects, high cost, prolonged treatment, and resistant strain selection. Malassezia pachydermatis is the most frequently isolated yeast in cases of canine otitis and dermatitis. The number of fungal strains exhibiting primary resistance to several drugs in vitro is increasing. Propolis has a diverse chemical composition and well-known therapeutic properties against mycoses. An alternative method for producing propolis extracts using supercritical fluid has higher selectivity, yielding extracts with fewer pollutant residues. This study therefore aimed to evaluate the in vitro susceptibility profile of M. pachydermatis clinical isolates to precharacterized supercritical and ethanolic extracts. Three types of Brazilian propolis extracts (green, red, and brown) and commercial allopathic antifungals were used in this investigation. We used the microdilution broth technique to evaluate the susceptibility profile of the yeasts. The minimum inhibitory concentration (MIC) of the brown propolis ethanolic extract was ≥16 µg/mL for all isolates. The MICs of fluconazole, ketoconazole, itraconazole, and amphotericin B ranged from 8 to >64 µg/mL, 0.032-4 µg/mL, 0.0313-16 µg/mL, and 1-2 µg/mL, respectively. The MICs of ethanolic red propolis extracts were lower than those of supercritical red propolis extracts. However, the green propolis ethanolic extract had more pronounced fungicidal activity. Isolates with lower susceptibility to commercial fungicides were inhibited by red and green propolis extracts. These results indicate that propolis can potentially be used in in vivo experiments as a promising therapeutic agent against M. pachydermatis infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...