Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 126(10): 107203, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33784157

RESUMO

Neutron spectroscopy on the classical triangular-lattice frustrated antiferromagnet h-YMnO_{3} reveals diffuse, gapless magnetic excitations present both far below and above the ordering temperature. The correlation length of the excitations increases as the temperature approaches zero, bearing a strong resemblance to critical scattering. We model the dynamics in the ordered and correlated disordered phase as critical spin correlations in a two-dimensional magnetic state. We propose that our findings may provide a general framework to understand features often attributed to classical spin liquids.

2.
J Phys Condens Matter ; 30(43): 435803, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30229750

RESUMO

The magnetic structure of the ternary equiatomic intermetallic compound PrCuSi is investigated using neutron powder diffraction experiments in 0 T as well as in external magnetic fields up to 2 T. The PrCuSi compound crystallizes in the hexagonal Ni2In-type structure, in the space group P63/mmc. In this structure, cationic ordering of Cu and Si takes place. The antiferromagnetic phase transition in the Pr sublattice takes place at [Formula: see text] K in 0 T. Under an external magnetic field of 2 T, a field-induced ferromagnetic phase is observed. Magnetoelastic coupling is evidenced by an increase in the unit cell volume. Clear signatures of a mixed antiferromagnetic and ferromagnetic phase in weak, intermediate fields, 0.4-0.8 T, are obtained from the present study. Using the present set of experimental data, we construct the H - T phase diagram of PrCuSi.

3.
Rev Sci Instrum ; 87(6): 065101, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27370491

RESUMO

VESPA, Vibrational Excitation Spectrometer with Pyrolytic-graphite Analysers, aims to probe molecular excitations via inelastic neutron scattering. It is a thermal high resolution inverted geometry time-of-flight instrument designed to maximise the use of the long pulse of the European Spallation Source. The wavelength frame multiplication technique was applied to provide simultaneously a broad dynamic range (about 0-500 meV) while a system of optical blind choppers allows to trade flux for energy resolution. Thanks to its high flux, VESPA will allow the investigation of dynamical and in situ experiments in physical chemistry. Here we describe the design parameters and the corresponding McStas simulations.

4.
Science ; 350(6257): 179-81, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26450205

RESUMO

Frustrated magnetic materials are promising candidates for new states of matter because lattice geometry suppresses conventional magnetic dipole order, potentially allowing "hidden" order to emerge in its place. A model of a hidden-order state at the atomic scale is difficult to deduce because microscopic probes are not directly sensitive to hidden order. Here, we develop such a model of the spin-liquid state in the canonical frustrated magnet gadolinium gallium garnet (Gd3Ga5O12). We show that this state exhibits a long-range hidden order in which multipoles are formed from 10-spin loops. The order is a consequence of the interplay between antiferromagnetic spin correlations and local magnetic anisotropy, which allows it to be indirectly observed in neutron-scattering experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...