Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Opin Pediatr ; 28(5): 584-9, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27428484

RESUMO

PURPOSE OF REVIEW: The study of cardiac development is critical to inform management strategies for congenital and acquired heart disease. This review serves to highlight some of the advances in this field over the past year. RECENT FINDINGS: Three main areas of study are included that have been particularly innovative and progressive. These include more precise gene targeting in animal models of disease and in moving from animal models to human disease, more precise in-vitro models including three-dimensional structuring and inclusion of hemodynamic components, and expanding the concepts of genetic regulation of heart development and disease. SUMMARY: Targeted genetics in animal models are able to make use of tissue and time-specific promotors that drive gene expression or knockout with high specificity. In-vitro models can recreate flow patterns in blood vessels and across cardiac valves. Noncoding RNAs, once thought to be of no consequence to gene transcription and translation, prove to be key regulators of genetic function in health and disease.


Assuntos
Cardiopatias Congênitas/embriologia , Coração/embriologia , Animais , Variações do Número de Cópias de DNA , Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento , Coração/fisiologia , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/fisiopatologia , Hemodinâmica , Humanos , Técnicas In Vitro , Modelos Anatômicos , RNA não Traduzido
2.
Dis Model Mech ; 5(4): 468-80, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22563055

RESUMO

CENP-F is a large multifunctional protein with demonstrated regulatory roles in cell proliferation, vesicular transport and cell shape through its association with the microtubule (MT) network. Until now, analysis of CENP-F has been limited to in vitro analysis. Here, using a Cre-loxP system, we report the in vivo disruption of CENP-F gene function in murine cardiomyocytes, a cell type displaying high levels of CENP-F expression. Loss of CENP-F function in developing myocytes leads to decreased cell division, blunting of trabeculation and an initially smaller, thin-walled heart. Still, embryos are born at predicted mendelian ratios on an outbred background. After birth, hearts lacking CENP-F display disruption of their intercalated discs and loss of MT integrity particularly at the costamere; these two structures are essential for cell coupling/electrical conduction and force transduction in the heart. Inhibition of myocyte proliferation and cell coupling as well as loss of MT maintenance is consistent with previous reports of generalized CENP-F function in isolated cells. One hundred percent of these animals develop progressive dilated cardiomyopathy with heart block and scarring, and there is a 20% mortality rate. Importantly, although it has long been postulated that the MT cytoskeleton plays a role in the development of heart disease, this study is the first to reveal a direct genetic link between disruption of this network and cardiomyopathy. Finally, this study has broad implications for development and disease because CENP-F loss of function affects a diverse array of cell-type-specific activities in other organs.


Assuntos
Cardiomiopatia Dilatada/patologia , Proteínas Cromossômicas não Histona/deficiência , Deleção de Genes , Proteínas dos Microfilamentos/deficiência , Microtúbulos/metabolismo , Envelhecimento/patologia , Animais , Animais Recém-Nascidos , Bromodesoxiuridina/metabolismo , Cardiomiopatia Dilatada/genética , Anormalidades Cardiovasculares/embriologia , Anormalidades Cardiovasculares/patologia , Proliferação de Células , Proteínas Cromossômicas não Histona/metabolismo , Costâmeros/metabolismo , Fibrose , Perfilação da Expressão Gênica , Coração/embriologia , Integrases/metabolismo , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Especificidade de Órgãos , Ligação Proteica , Transcrição Gênica , Troponina T/metabolismo
4.
Dev Dyn ; 237(5): 1424-33, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18425850

RESUMO

CMF1 protein is expressed in developing striated muscle before the expression of contractile proteins, and depletion of CMF1 in myoblasts results in inability to express muscle-specific proteins. Previous studies of CMF1 identify a functional Rb-binding domain, which is conserved in the murine and human homologues. Here, we show that CMF1 binds Rb family members, while a CMF1 protein with deletion of the Rb-binding domain (Rb-del CMF1) does not. Myogenic cell lines over-expressing Rb-del CMF1 proliferate normally, but exhibit markedly impaired differentiation, including dramatically reduced contractile proteins gene expression and failure to fuse into myotubes. Furthermore, by quantitative real-time polymerase chain reaction, MyoD and Myf5 mRNA levels are comparable to wild-type, while myogenin and contractile protein mRNA levels are significantly attenuated. These data demonstrate that CMF1 regulates myocyte differentiation by interaction with Rb family members to induce expression of myogenic regulatory factors.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Desenvolvimento Muscular/fisiologia , Proteínas Musculares/metabolismo , Músculo Esquelético/fisiologia , Mioblastos/fisiologia , Proteína do Retinoblastoma/metabolismo , Animais , Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Linhagem Celular , Proliferação de Células , Proteínas Cromossômicas não Histona/genética , Proteínas Contráteis/genética , Proteínas Contráteis/metabolismo , Humanos , Camundongos , Proteínas dos Microfilamentos , Proteínas Musculares/genética , Músculo Esquelético/citologia , Proteína MyoD/genética , Proteína MyoD/metabolismo , Mioblastos/citologia , Miócitos Cardíacos/fisiologia , Fator Regulador Miogênico 5/genética , Fator Regulador Miogênico 5/metabolismo , Miogenina/genética , Miogenina/metabolismo , Ligação Proteica , Codorniz , Proteína do Retinoblastoma/genética
5.
Exp Cell Res ; 312(16): 3000-14, 2006 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16904105

RESUMO

CMF1 is a protein expressed in embryonic striated muscle with onset of expression preceding that of contractile proteins. Disruption of CMF1 in myoblasts disrupts muscle-specific protein expression. Preliminary studies indicate both nuclear and cytoplasmic distribution of CMF1 protein, suggesting functional roles in both cellular compartments. Here we examine the nuclear function of CMF1, using a newly characterized antibody generated against the CMF1 nuclear localization domain and a CMF1 nuclear localization domain-deleted stable myocyte line. The antibody demonstrates nuclear distribution of the CMF1 protein both in vivo and in cell lines, with clustering of CMF1 protein around chromatin during mitosis. In more differentiated myocytes, the protein shifts to the cytoplasm. The CMF1 NLS-deleted cell lines have markedly impaired capacity to differentiate. Specifically, these cells express less contractile protein than wild-type or full-length CMF1 stably transfected cells, and do not fuse properly into multinucleate syncytia with linear nuclear alignment. In response to low serum medium, a signal to differentiate, CMF1 NLS-deleted cells enter G0, but continue to express proliferation markers and will reenter the cell cycle when stimulated by restoring growth medium. These data suggest that CMF1 is involved in regulation the transition from proliferation to differentiation in embryonic muscle.


Assuntos
Proteínas Aviárias/metabolismo , Ciclo Celular , Diferenciação Celular , Mioblastos Esqueléticos/citologia , Sinais de Localização Nuclear/genética , Codorniz , Deleção de Sequência/genética , Sequência de Aminoácidos , Animais , Proteínas Aviárias/química , Proteínas Aviárias/genética , Células COS , Núcleo Celular/metabolismo , Proliferação de Células , Galinhas , Chlorocebus aethiops , Sequência Conservada , Citoplasma/metabolismo , Expressão Gênica , Células HeLa , Humanos , Dados de Sequência Molecular , RNA Mensageiro/genética , Transfecção
6.
Anat Rec A Discov Mol Cell Evol Biol ; 286(1): 823-32, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16047383

RESUMO

A defining characteristic of embryonic cells is their ability to divide rapidly, even in tissues such as cardiac muscle, which cannot divide once fully differentiated. This suggests that regulators of cell division differ in embryonic and differentiated cells. LEK1 is a member of an emerging family of proteins with diverse functions but shared structural domains, including numerous leucine zippers, a nuclear localization site, and a functional Rb-binding domain. LEK1 is expressed ubiquitously in the developing mouse embryo from the earliest stages of differentiation through birth. It is absent in adult tissues, even those that maintain active cell division. We hypothesize that LEK1 is a regulator of mitosis restricted to the developing embryo and early neonate. Here, using BrdU incorporation, we show that LEK1 protein downregulation in cardiac myocytes correlates directly with cessation of DNA synthesis between neonatal days 6 and 10. In contrast, in an immortalized cardiac cell line (HL1 cells), both BrdU incorporation and LEK1 protein expression persist, and actively dividing cells express LEK1. However, BrdU incorporation can be decreased in these cells by treatment with a morpholino targeting LEK1 mRNA. These data suggest a role for LEK1 in regulating the normal embryonic cardiomyocyte cell cycle and in promoting continued mitosis in transformed, abnormally dividing cardiomyocytes.


Assuntos
Proteínas Cromossômicas não Histona/biossíntese , Regulação da Expressão Gênica , Mitose/fisiologia , Miócitos Cardíacos/metabolismo , Animais , Ciclo Celular/genética , Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Células Cultivadas , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/fisiologia , Regulação para Baixo/genética , Regulação para Baixo/fisiologia , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Coração/embriologia , Coração/fisiologia , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos ICR , Proteínas dos Microfilamentos , Mitose/genética , Miócitos Cardíacos/fisiologia
7.
J Biol Chem ; 279(1): 664-76, 2004 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-14555653

RESUMO

LEK1, a member of the LEK family of proteins, is ubiquitously expressed in developing murine tissues. Our current studies are aimed at identifying the role of LEK1 during cell growth and differentiation. Little is known about the function of LEK proteins. Recent studies in our laboratory have focused on the characterization of the LEK1 atypical Rb-binding domain that is conserved among all LEK proteins. Our findings suggest that LEK1 potentially functions as a universal regulator of pocket protein activity. Pocket proteins exhibit distinct expression patterns during development and function to regulate cell cycle, apoptosis, and tissue-specific gene expression. We show that LEK1 interacts with all three pocket proteins, p107, p130, and pRb. Additionally, this interaction occurs specifically between the LEK1 Rb-binding motif and the "pocket domain" of Rb proteins responsible for Rb association with other targets. Analyses of the effects of disruption of LEK1 protein expression by morpholino oligomers demonstrate that LEK1 depletion decreases cell proliferation, disrupts cell cycle progression, and induces apoptosis. Given its expression in developing cells, its association with pocket proteins, and its effects on proliferation, cell cycle, and viability of cells, we suggest that LEK1 functions in a similar manner to phosphorylation to disrupt association of Rb proteins with appropriate binding targets. Thus, the LEK1/Rb interaction serves to retain cells in a pre-differentiative, actively proliferative state despite the presence of Rb proteins during development. Our data suggest that LEK1 is unique among LEK family members in that it specifically functions during murine development to regulate the activity of Rb proteins during cell division and proliferation. Furthermore, we discuss the distinct possibility that a yet unidentified splice variant of the closely related human CENP-F, serves a similar function to LEK1 in humans.


Assuntos
Proteínas Cromossômicas não Histona/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Células COS , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/fisiologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Divisão Celular/efeitos dos fármacos , Divisão Celular/fisiologia , Chlorocebus aethiops , Proteínas Cromossômicas não Histona/química , Clonagem Molecular , Primers do DNA , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Sequências Hélice-Alça-Hélice , Camundongos , Proteínas dos Microfilamentos , Dados de Sequência Molecular , Fragmentos de Peptídeos/farmacologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteína do Retinoblastoma/metabolismo , Deleção de Sequência , Transfecção
8.
Curr Opin Pediatr ; 14(5): 627-33, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12352259

RESUMO

Numerous advances in understanding the molecular basis of congenital heart disease have been published in the past year. Highlights are reviewed, focusing on two major topics: genetic syndromes and cardiac organogenesis. Genetic syndromes are discussed in the context of complementary data from targeted mutations in animals and genetic mapping studies in humans. These include the DiGeorge, Holt-Oram, Alagille, familial primary pulmonary hypertension, and Noonan syndromes. Novel concepts in cardiac organogenesis are discussed, including the existence and contribution of an anterior heart field to the developing cardiac outflow tract, novel cell-cell signaling involving migrating neural crest, the origins of the conduction system and initial embryonic heartbeat, and the possibility of a population of cardiac stem cells in the adult heart. The studies reviewed have potential clinical relevance in the near future and will be of interest to the clinician interested in congenital heart disease.


Assuntos
Cardiologia/métodos , Cardiologia/tendências , Cardiopatias Congênitas/embriologia , Cardiopatias Congênitas/genética , Biologia Molecular/métodos , Biologia Molecular/tendências , Organogênese/genética , Pediatria/métodos , Pediatria/tendências , Fatores Etários , Animais , Criança , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA