Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 6: 36165, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27824071

RESUMO

In this study, we observed the peak splitting of absorption spectra for two-dimensional sheets of silver nanoparticles due to the electromagnetically induced transparency (EIT) effect. This unique optical phenomenon was observed for the multilayered nanosheets up to 20 layers on a metal substrate, while this phenomenon was not observed on a transparent substrate. The wavelength and intensities of the split peaks depend on the number of layers, and the experimental results were well reproduced by the calculation of the Transfer-Matrix method by employing the effective medium approximation. The Ag nanosheets used in this study can act as a plasmonic metamaterial light absorber, which has a such large oscillator strength. This phenomenon is a fundamental optical property of a thin film on a metal substrate but has never been observed because native materials do not have a large oscillator strength. This new type of EIT effect using a plasmonic metamaterial light absorber presents the potential for the development of future optic and photonic technologies.

2.
Langmuir ; 32(32): 8154-62, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27445001

RESUMO

Photocatalysts are practically used for decomposition of harmful and fouling organic compounds. Among the photocatalytic reactions, remote oxidation via airborne species is a relatively slow process, so that a sensitive technique for its detection has been awaiting. Here, we investigated an airborne remote photocatalytic reaction of a TiO2 photocatalyst modified with Pt nanoparticles as co-catalysts via the color change caused by a decomposition of a multilayered silver nanoparticle sheet. The silver nanoparticle sheet fabricated by the Langmuir-Schaefer method on a gold substrate exhibits a unique multicolor depending upon the number of layers. The color originates from multiple light trapping in the stratified sheets that has a metamaterial characteristic along with an intra- and interlayer coupling of localized surface plasmon resonance (LSPR). The stepwise decomposition of the sheets was confirmed by the colorimetric data, which exhibited not only a monotonic decrease but also a maximized absorption of light when the film thickness reached the optimal thickness for light trapping or when the oxidation of the Ag core started. Scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and surface plasmon resonance (SPR) spectroscopy data provided a complete view of the decomposition process of this inorganic-organic nanocomposite film, and simulation by the transfer-matrix method explained a simultaneous plasmonic response rationally. The influence of the humidity and gas flow rate on the airborne remote photocatalytic reaction kinetics was examined by this colorimetric detection method, and it suggests that H2O in air plays an essential role in the reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...