Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37219079

RESUMO

Aging is a major risk factor for Alzheimer's disease (AD), and cell-type vulnerability underlies its characteristic clinical manifestations. We have performed longitudinal, single-cell RNA-sequencing in Drosophila with pan-neuronal expression of human tau, which forms AD neurofibrillary tangle pathology. Whereas tau- and aging-induced gene expression strongly overlap (93%), they differ in the affected cell types. In contrast to the broad impact of aging, tau-triggered changes are strongly polarized to excitatory neurons and glia. Further, tau can either activate or suppress innate immune gene expression signatures in a cell-type-specific manner. Integration of cellular abundance and gene expression pinpoints nuclear factor kappa B signaling in neurons as a marker for cellular vulnerability. We also highlight the conservation of cell-type-specific transcriptional patterns between Drosophila and human postmortem brain tissue. Overall, our results create a resource for dissection of dynamic, age-dependent gene expression changes at cellular resolution in a genetically tractable model of tauopathy.


Assuntos
Doença de Alzheimer , Proteínas tau , Animais , Humanos , Proteínas tau/genética , Proteínas tau/metabolismo , Neurônios/metabolismo , Doença de Alzheimer/metabolismo , Neuroglia/metabolismo , Envelhecimento/genética , Encéfalo/metabolismo , Drosophila/metabolismo
2.
Neurol Genet ; 8(4): e200002, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35747619

RESUMO

Background and Objectives: Genetic variants affect both Parkinson disease (PD) risk and manifestations. Although genetic information is of potential interest to patients and clinicians, genetic testing is rarely performed during routine PD clinical care. The goal of this study was to examine interest in comprehensive genetic testing among patients with PD and document reactions to possible findings from genome sequencing in 2 academic movement disorder clinics. Methods: In 203 subjects with PD (age = 63 years, 67% male), genome sequencing was performed and filtered using a custom panel, including 49 genes associated with PD, parkinsonism, or related disorders, as well as a 90-variant PD genetic risk score. Based on the results, 231 patients (age = 67 years, 63% male) were surveyed on interest in genetic testing and responses to vignettes covering (1) familial risk of PD (LRRK2); (2) risk of PD dementia (GBA); (3) PD genetic risk score; and (4) secondary, medically actionable variants (BRCA1). Results: Genome sequencing revealed a LRRK2 variant in 3% and a GBA risk variant in 10% of our clinical sample. The genetic risk score was normally distributed, identifying 41 subjects with a high risk of PD. Medically actionable findings were discovered in 2 subjects (1%). In our survey, the majority (82%) responded that they would share a LRRK2 variant with relatives. Most registered unchanged or increased interest in testing when confronted with a potential risk for dementia or medically actionable findings, and most (75%) expressed interest in learning their PD genetic risk score. Discussion: Our results highlight broad interest in comprehensive genetic testing among patients with PD and may facilitate integration of genome sequencing in clinical practice.

3.
World Neurosurg ; 153: 21-25, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34144164

RESUMO

Intraventricular hemorrhage (IVH) is common in premature newborns and poses a high risk for morbidity with lifelong disability. We searched the available literature for original and secondary literature regarding the epidemiology, pathogenesis, and treatment of IVH in order to trace changes in the management of this disease over time. We examined IVH pathogenesis and epidemiology and reviewed the history of medical and surgical treatment for intraventricular hemorrhage in preterm children. Initial medical management strategies aimed at correcting coagulopathy and eventually targeted mediators of perinatal instability including respiratory distress. Surgical management centered around cerebrospinal fluid diversion, initially through serial lumbar punctures, progressing to ventriculoperitoneal shunting, with more recent interventions addressing intraventricular clot burden. We provide a historical review of the evolution of treatment for IVH in newborns. While the management of IVH has grown significantly over time, IVH remains a common neurosurgical disease that continues to affect patient and caregiver quality of life and health care costs. Despite advances in treatment over more than a century, IVH remains a significant cause of morbidity and mortality in premature infants, and an understanding of past approaches may inform the development of new treatments.


Assuntos
Hemorragia Cerebral Intraventricular/epidemiologia , Hemorragia Cerebral Intraventricular/terapia , Doenças do Prematuro/epidemiologia , Doenças do Prematuro/terapia , Feminino , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Masculino
4.
J Neurosci ; 38(43): 9286-9301, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30249792

RESUMO

Accumulation of α-Synuclein (α-Syn) causes Parkinson's disease (PD) as well as other synucleopathies. α-Syn is the major component of Lewy bodies and Lewy neurites, the proteinaceous aggregates that are a hallmark of sporadic PD. In familial forms of PD, mutations or copy number variations in SNCA (the α-Syn gene) result in a net increase of its protein levels. Furthermore, common risk variants tied to PD are associated with small increases of wild-type α-Syn levels. These findings are further bolstered by animal studies which show that overexpression of α-Syn is sufficient to cause PD-like features. Thus, increased α-Syn levels are intrinsically tied to PD pathogenesis and underscore the importance of identifying the factors that regulate its levels. In this study, we establish a pooled RNAi screening approach and validation pipeline to probe the druggable genome for modifiers of α-Syn levels and identify 60 promising targets. Using a cross-species, tiered validation approach, we validate six strong candidates that modulate α-Syn levels and toxicity in cell lines, Drosophila, human neurons, and mouse brain of both sexes. More broadly, this genetic strategy and validation pipeline can be applied for the identification of therapeutic targets for disorders driven by dosage-sensitive proteins.SIGNIFICANCE STATEMENT We present a research strategy for the systematic identification and validation of genes modulating the levels of α-Synuclein, a protein involved in Parkinson's disease. A cell-based screen of the druggable genome (>7,500 genes that are potential therapeutic targets) yielded many modulators of α-Synuclein that were subsequently confirmed and validated in Drosophila, human neurons, and mouse brain. This approach has broad applicability to the multitude of neurological diseases that are caused by mutations in genes whose dosage is critical for brain function.


Assuntos
Genoma/genética , Neurônios/fisiologia , Interferência de RNA/fisiologia , Análise de Sequência de RNA/métodos , alfa-Sinucleína/genética , Animais , Animais Recém-Nascidos , Drosophila , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Reprodutibilidade dos Testes , Especificidade da Espécie
5.
Aging Cell ; 14(5): 715-24, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26053162

RESUMO

Various neurodegenerative diseases are characterized by the accumulation of amyloidogenic proteins such as tau, α-synuclein, and amyloid-ß. Prior to the formation of these stable aggregates, intermediate species of the respective proteins-oligomers-appear. Recently acquired data have shown that oligomers may be the most toxic and pathologically significant to neurodegenerative diseases such as Alzheimer's and Parkinson's. The covalent modification of these oligomers may be critically important for biological processes in disease. Ubiquitin and small ubiquitin-like modifiers are the commonly used tags for degradation. While the modification of large amyloid aggregates by ubiquitination is well established, very little is known about the role ubiquitin may play in oligomer processing and the importance of the more recently discovered sumoylation. Many proteins involved in neurodegeneration have been found to be sumoylated, notably tau protein in brains afflicted with Alzheimer's. This evidence suggests that while the cell may not have difficulty recognizing dangerous proteins, in brains afflicted with neurodegenerative disease, the proteasome may be unable to properly digest the tagged proteins. This would allow toxic aggregates to develop, leading to even more proteasome impairment in a snowball effect that could explain the exponential progression in most neurodegenerative diseases. A better understanding of the covalent modifications of oligomers could have a huge impact on the development of therapeutics for neurodegenerative diseases. This review will focus on the proteolysis of tau and other amyloidogenic proteins induced by covalent modification, and recent findings suggesting a relationship between tau oligomers and sumoylation.


Assuntos
Doenças Neurodegenerativas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Humanos , Modelos Moleculares , Complexo de Endopeptidases do Proteassoma/química , Proteólise , Proteínas tau/química , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...