Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(46): 51709-51718, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33164497

RESUMO

Understanding and controlling the driving forces for molecular alignment in optoelectronic thin-film devices is of crucial importance for improving their performance. In this context, the preferential orientation of organometallic iridium complexes is in the focus of research to benefit from their improved light-outcoupling efficiencies in organic light-emitting diodes (OLEDs). Although there has been great progress concerning the orientation behavior for heteroleptic Ir complexes, the mechanism behind the alignment of homoleptic complexes is still unclear yet. In this work, we present a sky-blue phosphorescent dye that shows variable alignment depending on systematic modifications of the ligands bound to the central iridium atom. From an optical study of the transition dipole moment orientation and the electrically accessible alignment of the permanent dipole moment, we conclude that the film morphology is related to both the aspect ratio of the dye and the local electrostatic interaction of the ligands with the film surface during growth. These results indicate a potential strategy to actively control the orientation of iridium-based emitters for the application in OLEDs.

2.
Chem Sci ; 12(3): 1121-1125, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34163879

RESUMO

Understanding triplet exciton diffusion between organic thermally activated delayed fluorescence (TADF) molecules is a challenge due to the unique cycling between singlet and triplet states in these molecules. Although prompt emission quenching allows the singlet exciton diffusion properties to be determined, analogous analysis of the delayed emission quenching does not yield accurate estimations of the triplet diffusion length (because the diffusion of singlet excitons regenerated after reverse-intersystem crossing needs to be accounted for). Herein, we demonstrate how singlet and triplet diffusion lengths can be accurately determined from accessible experimental data, namely the integral prompt and delayed fluorescence. In the benchmark materials 4CzIPN and 4TCzBN, we show that the singlet diffusion lengths are (9.1 ± 0.2) and (12.8 ± 0.3) nm, whereas the triplet diffusion lengths are negligible, and certainly less than 1.0 and 1.2 nm, respectively. Theory confirms that the lack of overlap between the shielded lowest unoccupied molecular orbitals (LUMOs) hinders triplet motion between TADF chromophores in such molecular architectures. Although this cause for the suppression of triplet motion does not occur in molecular architectures that rely on electron resonance effects (e.g. DiKTa), we find that triplet diffusion is still negligible when such molecules are dispersed in a matrix material at a concentration sufficiently low to suppress aggregation. The novel and accurate method of understanding triplet diffusion in TADF molecules will allow accurate physical modeling of OLED emitter layers (especially those based on TADF donors and fluorescent acceptors).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...