Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genet Mol Biol ; 43(2): e20180331, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32251493

RESUMO

The distribution of 45S rDNA cluster in avian karyotypes varies in different aspects, such as position, number of bearer chromosomes, and bearers being macro- or microchromosomes. The present study investigated the patterns of variation in the 45S rDNA-bearer chromosomes of birds in order to understand the evolutionary dynamics of the cluster configuration and its contribution to the evolution of bird karyotypes. A total of 73 bird species were analyzed, including both published data and species for which rDNA-FISH was conducted for the first time. In most birds, the 45S rDNA clusters were located in a single pair of microchromosomes. Hence, the location of 45S rDNA in macrochromosomes, observed only in Neognathae species, seems to be a derived state, probably the result of chromosomal fusion between microchromosomes and distinct macrochromosomes. Additionally, the 45S rDNA was observed in multiple microchromosomes in different branches of the bird phylogeny, suggesting recurrence of dispersion processeses, such as duplications and translocations. Overall, this study indicated that the redistribution of the 45S rDNA sites in bird chromosomes followed different evolutionary trajectories with respect to each lineage of the class Aves.

2.
Genet Mol Biol ; 43(1): e20190232, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32162650

RESUMO

Despite the richness of species in the Hirudinidae family, little is known about the genome organization of swallows. The Progne tapera species presents genetic and morphological difference when compared to other members of the same genus. Hence, the aims of this study were to analyze the chromosomal evolution of three species Progne tapera, Progne chalybea and Pygochelidon cyanoleuca - by comparative chromosome painting using two sets of probes, Gallus gallus and Zenaida auriculata, in order to determine chromosome homologies and the relationship between these species. All karyotypes exhibited 76 chromosomes with similar morphology, except for the 5th, 6th and 7th chromosome pairs in P. cyanoleuca. Additionally, comparative chromosome painting demonstrated the same hybridization pattern in the two Progne, which was similar to the putative avian ancestral karyotype, except for the centric fission in the first pair, as found in other Passeriformes. Thus, these data display a close relationship between the Progne species. Although P. cyanoleuca demonstrated the same fission in the first pair of the ancestral syntenic (GGA1), it also showed an additional chromosomal rearrangement for this species, namely a fusion with a microchromosome in the seventh pair.

3.
Genet Mol Biol ; 43(1): e20190236, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32105288

RESUMO

The order Charadriiformes comprises three major clades: Lari and Scolopaci as sister group to Charadrii. Until now, only three Charadriiformes species have been studied by chromosome painting: Larus argentatus (Lari), Burhinus oedicnemus and Vanellus chilensis (Charadrii). Hence, there is a lack of information concerning the third clade, Scolapaci. Based on this, and to gain a better understanding of karyotype evolution in the order Charadriiformes, we applied conventional and molecular cytogenetic approaches in a species belonging to clade Scolopaci - the wattled jacana (Jacana jacana) - using Gallus gallus and Zenaida auriculata chromosome-specific probes. Cross-species evaluation of J. jacana chromosomes shows extensive genomic reshuffling within macrochromosomes during evolution, with multiple fission and fusion events, although the diploid number remains at high level (2n=82). Interestingly, this species does not have the GGA7-8 fusion, which was found in two representatives of Charadrii clade, reinforcing the idea that this fusion may be exclusive to the Charadrii clade. In addition, it is shown that the chromosome evolution in Charadriiformes is complex and resulted in species with typical and atypical karyotypes. The karyotypic features of Scolopaci are very different from those of Charadrii and Lari, indicating that after divergence, each suborder has undergone different chromosome rearrangements.

4.
Genet Mol Biol ; 43(4): e20200162, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33410454

RESUMO

Hummingbirds (Trochilidae) are one of the most enigmatic avian groups, and also among the most diverse, with approximately 360 recognized species in 106 genera, of which 43 are monotypic. This fact has generated considerable interest in the evolutionary biology of the hummingbirds, which is reflected in a number of DNA-based studies. However, only a few of them explored chromosomal data. Given this, the present study provides an analysis of the karyotypes of three species of Neotropical hummingbirds, Anthracothorax nigricollis (ANI), Campylopterus largipennis (CLA), and Hylocharis chrysura (HCH), in order to analyze the chromosomal processes associated with the evolution of the Trochilidae. The diploid number of ANI is 2n=80 chromosomes, while CLA and HCH have identical karyotypes, with 2n=78. Chromosome painting with Gallus gallus probes (GGA1-12) shows that the hummingbirds have a karyotype close to the proposed ancestral bird karyotype. Despite this, an informative rearrangement was detected: an in-tandem fusion between GGA7 and GGA9 found in CLA and HCH, but absent in ANI. A comparative analysis with the tree of life of the hummingbirds indicated that this fusion must have arisen following the divergence of a number of hummingbird species.

5.
Comp Cytogenet ; 12(2): 163-170, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29780444

RESUMO

Kingfishers comprise about 115 species of the family Alcedinidae, and are an interesting group for cytogenetic studies, for they are among birds with most heterogeneous karyotypes. However, cytogenetics knowledge in Kingfishers is extremely limited. Thus, the aim of this study was to describe the karyotype structure of the Ringed Kingfisher (Megaceryle torquata Linnaeus, 1766) and Green Kingfisher (Chloroceryle americana Gmelin, 1788) and also compare them with related species in order to identify chromosomal rearrangements. The Ringed Kingfisher presented 2n = 84 and the Green Kingfisher had 2n = 94. The increase of the chromosome number in the Green Kingfisher possibly originated by centric fissions in macrochromosomes. In addition, karyotype comparisons in Alcedinidae show a heterogeneity in the size and morphology of macrochromosomes, and chromosome numbers ranging from 2n = 76 to 132. Thus, it is possible chromosomal fissions in macrochromosomes resulted in the increase of the diploid number, whereas chromosome fusions have originated the karyotypes with low diploid number.

6.
Comp Cytogenet ; 11(3): 541-552, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29093802

RESUMO

Penguins are classified in the order Sphenisciformes into a single family, Spheniscidae. The genus Pygoscelis Wagler, 1832, is composed of three species, Pygoscelis antarcticus Forster, 1781, P. papua Forster, 1781 and P. adeliae Hombron & Jacquinot, 1841. In this work, the objective was to describe and to compare the karyotypes of Pygoscelis penguins contributing genetic information to Sphenisciformes. The metaphases were obtained by lymphocyte culture, and the diploid number and the C-banding pattern were determined. P. antarcticus has 2n = 92, P. papua 2n = 94 and P. adeliae exhibited 2n = 96 in males and 2n = 95 in females. The difference of diploid number in P. adeliae was identified as a multiple sex chromosome system where males have Z1Z1Z2Z2 and females Z1Z2W. The C-banding showed the presence of a heterochromatic block in the long arm of W chromosome and Z2 was almost entirely heterochromatic. The probable origin of a multiple system in P. adeliae was a translocation involving the W chromosome and the chromosome ancestral to Z2. The comparison made possible the identification of a high karyotype homology in Sphenisciformes which can be seen in the conservation of macrochromosomes and in the Z chromosome. The karyotypic divergences in Pygoscelis are restricted to the number of microchromosomes and W, which proved to be highly variable in size and morphology. The data presented in this work corroborate molecular phylogenetic proposals, supporting the monophyletic origin of penguins and intraspecific relations.

7.
PLoS One ; 12(1): e0169987, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28081238

RESUMO

Birds are characterized by a low proportion of repetitive DNA in their genome when compared to other vertebrates. Among birds, species belonging to Piciformes order, such as woodpeckers, show a relatively higher amount of these sequences. The aim of this study was to analyze the distribution of different classes of repetitive DNA-including microsatellites, telomere sequences and 18S rDNA-in the karyotype of three Picidae species (Aves, Piciformes)-Colaptes melanochloros (2n = 84), Colaptes campestris (2n = 84) and Melanerpes candidus (2n = 64)-by means of fluorescence in situ hybridization. Clusters of 18S rDNA were found in one microchromosome pair in each of the three species, coinciding to a region of (CGG)10 sequence accumulation. Interstitial telomeric sequences were found in some macrochromosomes pairs, indicating possible regions of fusions, which can be related to variation of diploid number in the family. Only one, from the 11 different microsatellite sequences used, did not produce any signals. Both species of genus Colaptes showed a similar distribution of microsatellite sequences, with some difference when compared to M. candidus. Microsatellites were found preferentially in the centromeric and telomeric regions of micro and macrochromosomes. However, some sequences produced patterns of interstitial bands in the Z chromosome, which corresponds to the largest element of the karyotype in all three species. This was not observed in the W chromosome of Colaptes melanochloros, which is heterochromatic in most of its length, but was not hybridized by any of the sequences used. These results highlight the importance of microsatellite sequences in differentiation of sex chromosomes, and the accumulation of these sequences is probably responsible for the enlargement of the Z chromosome.


Assuntos
Aves/genética , Genoma , Sequências Repetitivas de Ácido Nucleico/genética , Cromossomos Sexuais/genética , Animais , Mapeamento Cromossômico , Análise por Conglomerados , Feminino , Hibridização in Situ Fluorescente , Cariotipagem , Masculino , Repetições de Microssatélites , RNA Ribossômico 18S/genética , Telômero/genética
8.
Genet Mol Biol ; 37(2): 375-80, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25071402

RESUMO

DOMESTIC BUFFALOES ARE DIVIDED INTO TWO GROUP BASED ON CYTOGENETIC CHARACTERISTICS AND HABITATS: the "river buffaloes" with 2n = 50 and the "swamp buffaloes", 2n = 48. Nevertheless, their hybrids are viable, fertile and identified by a 2n = 49. In order to have a better characterization of these different cytotypes of buffaloes, and considering that NOR-bearing chromosomes are involved in the rearrangements responsible for the karyotypic differences, we applied silver staining (Ag-NOR) and performed fluorescent in situ hybridization (FISH) experiments using 18S rDNA as probe. Metaphases were obtained through blood lymphocyte culture of 21 individuals, including river, swamp and hybrid cytotypes. Ag-NOR staining revealed active NORs on six chromosome pairs (3p, 4p, 6, 21, 23, 24) in the river buffaloes, whereas the swamp buffaloes presented only five NOR-bearing pairs (4p, 6, 20, 22, 23). The F1 cross-breed had 11 chromosomes with active NORs, indicating expression of both parental chromosomes. FISH analysis confirmed the numerical divergence identified with Ag-NOR. This result is explained by the loss of the NOR located on chromosome 4p in the river buffalo, which is involved in the tandem fusion with chromosome 9 in this subspecies. A comparison with the ancestral cattle karyotype suggests that the NOR found on the 3p of the river buffalo may have originated from a duplication of ribosomal genes, resulting in the formation of new NOR sites in this subspecies.

9.
Genet Mol Biol ; 36(3): 353-6, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24130442

RESUMO

Podocnemis expansa and P. unifilis present 2n = 28 chromosomes, a diploid number similar to those observed in other species of the genus. The aim of this study was to characterize these two species using conventional staining and differential CBG-, GTG and Ag-NOR banding. We analyzed specimens of P. expansa and P. unifilis from the state of Tocantins (Brazil), in which we found a 2n = 28 and karyotypes differing in the morphology of the 13(th) pair, which was submetacentric in P. expansa and telocentric in P. unifilis. The CBG-banding patterns revealed a heterochromatic block in the short arm of pair 13 of P. expansa and an interstitial one in pair 13 of P. unifilis, suggesting a pericentric inversion. Pair 14 of P. unifilis showed an insterstitial band in the long arm that was absent in P. expansa, suggesting a duplication in this region. Ag-NORs were observed in the first chromosome pair of both species and was associated to a secondary constriction and heterochromatic blocks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...