Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Microbiol ; 107(1): 85-96, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19302332

RESUMO

AIMS: The aim of this work was to assess the impact of the applied mass loading on the selection of an efficient microbial community able to degrade a complex mixture of volatile organic compounds (VOCs). METHODS AND RESULTS: Two reactors were used and were supplied with a gaseous effluent containing 11 VOCs with different concentrations. The response of the microflora was monitored as a function of time: biodegradation activity, bacterial density and diversity. The results showed that the applied mass loading seems to have an impact on the functioning and the genetic structure of the bacterial community. CONCLUSIONS: A high mass loading seems to induce a low efficient functioning in terms of elimination efficiency and a simplification of the genetic structure of the total bacterial community with the apparition of a dominant microflora. A low mass loading seems to favour a better functioning and allows to keep a healthier bacterial diversity. SIGNIFICANCE AND IMPACT OF THE STUDY: In the treatment processes of gaseous effluents, it would be judicious to define the functioning parameters of the process to keep the diversity of important functional bacterial groups. These results provide also useful information about changes in microbial communities following natural or anthropogenic alterations in different ecosystems.


Assuntos
Bactérias/metabolismo , Biodegradação Ambiental , Esgotos/microbiologia , Compostos Orgânicos Voláteis/metabolismo , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Reatores Biológicos , Cromatografia Gasosa , Microscopia de Fluorescência , Filogenia , Reação em Cadeia da Polimerase/métodos , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Fatores de Tempo , Compostos Orgânicos Voláteis/química
2.
J Appl Microbiol ; 98(2): 476-90, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15659202

RESUMO

AIMS: To investigate the relationships between the operation of the volatile organic compound (VOC) removal biofilter and the structure of microbial communities, and to study the impact on degradation activities and the structuring of microbial communities of biofilter malfunctions related to the qualitative composition of the polluted air. METHODS AND RESULTS: A microbiological study and a measurement of biodegradation activities were simultaneously carried out on two identical peat-packed columns, seeded with two different inocula, treating polluted air containing 11 VOCs. For both reactors, the spatial structure of the microbial communities was investigated by means of single-strand conformation polymorphism (SSCP) analysis. For both reactors, stratification of degradation activities in function of depth was observed. Oxygenated compounds were removed at the top of the column and aromatics at the bottom. Comparison of SSCP patterns clearly showed a shift in community structure in function of depth inside both biofilters. This distribution of biodegradation activities correlates with the spatialization of microbial density and diversity. Although the operating conditions of both reactors were identical and the biodegradation activities similar, the composition of microflora differed for biofilters A and B. Subdivision of biofilter B into two independent parts supplied with polluted air containing the complex VOC mixture showed that the microflora having colonized the bottom of biofilter B retained their potential for degrading oxygenated compounds. CONCLUSIONS: This work highlights the spatialization of biodegradation functions in a biofilter treating a complex mixture of VOCs. This distribution of biodegradation activities correlates with the spatialization of microbial density and diversity. SIGNIFICANCE AND IMPACT OF THE STUDY: This vertical structure of microbial communities must be taken into consideration when dealing with the malfunctioning of bioreactors. These results are also useful information about changes in microbial communities following natural or anthropogenic alterations in different ecosystems (soils and sediments) where structuring of microbial communities according to depth has been observed.


Assuntos
Microbiologia do Ar , Poluição do Ar , Bactérias , Solo , Biodegradação Ambiental , Reatores Biológicos , Filtração
3.
Proc Biol Sci ; 267(1443): 595-600, 2000 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-10787164

RESUMO

Previous studies have shown that Lamto savannah exhibits two different types of nitrogen cycle with high and low nitrification sites and suggested that the perennial grass Hyparrhenia diplandra is responsible for this duality at a subpopulation level, with one ecotype being thought to be able to inhibit nitrification. The present work aimed to investigate the relationships between nitrification and the roots of H. diplandra at two scales. (i) Site-scale experiments gave new insight into the hypothesized control of nitrification by H. diplandra tussocks: the two ecotypes exhibited opposite influences, inhibition in a low nitrification site (A) and stimulation in a high nitrification site (B). (ii) Decimetric-scale experiments demonstrated close negative or positive relationships (in sites A or B, respectively) between the roots and nitrification (in the 0-10 cm soil layer), showing an unexpectedly high sensitivity of the nitrification process to root density. In both soils, the correlation between the roots and nitrification decreased with depth and practically disappeared in the 20-30 cm soil layer (where the nitrification potential was found to be very low). Therefore, the impact of H. diplandra on nitrification may be viewed as an inhibition-stimulation balance.


Assuntos
Nitrogênio/metabolismo , Raízes de Plantas/metabolismo , Poaceae/metabolismo
4.
Microb Ecol ; 37(3): 208-217, 1999 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10227878

RESUMO

> Abstract Nitrification in freshwater, a key process in the nitrogen cycle, is now well known to take place predominantly on suspended particles and in sediment. Nitrobacter is the most commonly isolated nitrite oxidizing bacteria from water environments. Three methods for counting nitrite oxidizing communities (especially Nitrobacter) in sediment were investigated: MPN-Griess, fluorescent antibodies (immunofluorescence), and a more recent molecular method coupling specific DNA amplification by PCR and statistical MPN quantification. After preliminary adjustments of the MPN-PCR technique, the detection level and the yield of each method were determined by inoculating a sediment with a pure Nitrobacter culture. The best recovery yield was obtained with the immunofluorescence technique (21.3%) and the lowest detection level was reached with the MPN-Griess method (10(3) Nitrobacter/g dry weight sediment). The MPN-PCR method resulted in the lowest recovery yields and needs further adaptation to become a reliable and precise tool for investigations of nitrifying bacteria in sediment.

5.
Appl Environ Microbiol ; 61(6): 2093-8, 1995 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-7793930

RESUMO

Although the biological conversion of nitrite to nitrate is a well-known process, studies of Nitrobacter populations are hindered by their physiological characteristics. This report describes a new method for detecting and counting Nitrobacter populations in situ with the PCR. Two primers from the 16S rRNA gene were used to generate a 397-bp fragment by amplification of Nitrobacter species DNA. No signal was detected from their phylogenetic neighbors or the common soil bacteria tested. Extraction and purification steps were optimized for minimal loss and maximal purity of soil DNA. The detection threshold and accuracy of the molecular method were determined from soil inoculated with 10, 10(2), or 10(3) Nitrobacter hamburgensis cells per g of soil. Counts were also done by the most-probable-number (MPN)-Griess and fluorescent antibody methods. PCR had a lower detection threshold (10(2) Nitrobacter cells per g of soil) than did the MPN-Griess or fluorescent antibody method. When PCR amplification was coupled with the MPN method, the counting rate reached 65 to 72% of inoculated Nitrobacter cells. Tested on nonsterile soil, this rapid procedure was proved efficient.


Assuntos
Nitrobacter/isolamento & purificação , Contagem de Colônia Microbiana , DNA Bacteriano/genética , DNA Complementar/genética , Nitrobacter/genética , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...