Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Radiat Prot Dosimetry ; 177(1-2): 176-180, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29036375

RESUMO

Radon risk maps are usually based either on indoor radon data, or on measurements of soil gas radon and soil permeability. If these data are not available or not sufficient, it was suggested that other data could be used as an approximate substitute (a proxy) to the missing information, like the concentration of 238U or 226Ra in soils or the terrestrial gamma dose rate (TGDR). We examine here the correlation between airborne measurements of soil U and indoor radon, and between airborne U and TGDR, and their link with affected/unaffected areas. No clear correlation is found between airborne U and affected areas, as strongly affected areas are not characterised by a higher U level. Only the moderately affected area of Condroz can be connected to a higher U level, related to a few U anomalies. TGDR shows a rather good correlation with airborne U, but its relation with radon risk is less clear. Soil uranium and TGDR may help to screen out areas with very low U and very low TGDR, which have a low indoor radon risk, but they cannot be considered as good proxies for predicting radon-affected areas in Belgium.


Assuntos
Poluentes Radioativos do Ar/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento de Radiação/métodos , Radônio/análise , Poluentes Radioativos do Solo/análise , Bélgica , Raios gama , Doses de Radiação
2.
J Environ Radioact ; 166(Pt 2): 296-308, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26926960

RESUMO

An extensive network of dose rate monitoring stations continuously measures ambient dose rate across Europe, as part of the EURDEP system. Its purpose is early warning in radiological emergencies and documenting its temporal and spatial evolution. In normal conditions, when there is no contribution to the dose rate signal coming from fresh anthropogenic contamination, the data represent the radiation "background", i.e. the combined natural radiation and existing anthropogenic contamination (by global and Chernobyl fallout). These data are being stored, but have so far not been evaluated in depth, or used for any purpose. In the framework of the EU project 'European Atlas of Natural Radiation' the idea has emerged to exploit these data for generating a map of natural terrestrial gamma radiation. This component contributes to the total radiation exposure and knowing its geographical distribution can help establishing local 'radiation budgets'. A further use could be found in terrestrial dose rate as a proxy of the geogenic radon potential, as both quantities are related by partly the same source, namely uranium content of the ground. In this paper, we describe in detail the composition of the ambient dose equivalent rate as measured by the EURDEP monitors with respect to its physical nature and to its sources in the environment. We propose and compare methods to recover the terrestrial component from the gross signal. This requires detailed knowledge of detector response. We consider the probes used in the Austrian, Belgian and German dose rate networks, which are the respective national networks supplying data to EURDEP. It will be shown that although considerable progress has been made in understanding the dose rate signals, there is still space for improvement in terms of modelling and model parameters. An indispensable condition for success of the endeavour to establish a Europe-wide map of terrestrial dose rate background is progress in harmonising the European dose rate monitoring network.


Assuntos
Radiação de Fundo , Poluição Ambiental/estatística & dados numéricos , Raios gama , Doses de Radiação , Monitoramento de Radiação/métodos , Áustria , Exposição Ambiental/estatística & dados numéricos
3.
Radiat Prot Dosimetry ; 164(4): 563-8, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25969523

RESUMO

Indoor radon data from Southern Belgium are organised in 35 geological units (GUs), most of which are homogeneous with respect to the radon risk. The percentage of cases above the reference level (400 Bq m(-3); 300 Bq m(-3) in the future) is calculated for these GUs from the observations and from the log-normal distribution fitted to the data. Affected areas are defined as areas with more than 1 % of houses above the reference level. In the north of the region, the old Palaeozoic basement is generally covered by Silesian, Cretaceous and Tertiary rocks, which are unaffected. The affected areas here are hot spots associated with specific Palaeozoic outcrops. In the south, there is generally no cover above Palaeozoic formations, which are often radon affected. The affected areas of Ardenne and Condroz dominate this part, but unaffected areas occur like Famenne and Gaume. About 48 % of the Walloon region is expected to be radon affected.


Assuntos
Poluentes Radioativos do Ar/análise , Poluição do Ar em Ambientes Fechados/análise , Radônio/análise , Algoritmos , Bélgica , Geografia , Fenômenos Geológicos , Habitação , Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...