Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(20): e2310348121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38709922

RESUMO

The evolutionary conserved YopJ family comprises numerous type-III-secretion system (T3SS) effectors of diverse mammalian and plant pathogens that acetylate host proteins to dampen immune responses. Acetylation is mediated by a central acetyltransferase domain that is flanked by conserved regulatory sequences, while a nonconserved N-terminal extension encodes the T3SS-specific translocation signal. Bartonella spp. are facultative-intracellular pathogens causing intraerythrocytic bacteremia in their mammalian reservoirs and diverse disease manifestations in incidentally infected humans. Bartonellae do not encode a T3SS, but most species possess a type-IV-secretion system (T4SS) to translocate Bartonella effector proteins (Beps) into host cells. Here we report that the YopJ homologs present in Bartonellae species represent genuine T4SS effectors. Like YopJ family T3SS effectors of mammalian pathogens, the "Bartonella YopJ-like effector A" (ByeA) of Bartonella taylorii also targets MAP kinase signaling to dampen proinflammatory responses, however, translocation depends on a functional T4SS. A split NanoLuc luciferase-based translocation assay identified sequences required for T4SS-dependent translocation in conserved regulatory regions at the C-terminus and proximal to the N-terminus of ByeA. The T3SS effectors YopP from Yersinia enterocolitica and AvrA from Salmonella Typhimurium were also translocated via the Bartonella T4SS, while ByeA was not translocated via the Yersinia T3SS. Our data suggest that YopJ family T3SS effectors may have evolved from an ancestral T4SS effector, such as ByeA of Bartonella. In this evolutionary scenario, the signal for T4SS-dependent translocation encoded by N- and C-terminal sequences remained functional in the derived T3SS effectors due to the essential role these sequences coincidentally play in regulating acetyltransferase activity.


Assuntos
Proteínas de Bactérias , Bartonella , Sistemas de Secreção Tipo IV , Bartonella/metabolismo , Bartonella/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Humanos , Sistemas de Secreção Tipo IV/metabolismo , Sistemas de Secreção Tipo IV/genética , Transporte Proteico , Animais
2.
Nat Commun ; 15(1): 1844, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418509

RESUMO

The synthesis of complex sugars is a key aspect of microbial biology. Cyclic ß-1,2-glucan (CßG) is a circular polysaccharide critical for host interactions of many bacteria, including major pathogens of humans (Brucella) and plants (Agrobacterium). CßG is produced by the cyclic glucan synthase (Cgs), a multi-domain membrane protein. So far, its structure as well as the mechanism underlining the synthesis have not been clarified. Here we use cryo-electron microscopy (cryo-EM) and functional approaches to study Cgs from A. tumefaciens. We determine the structure of this complex protein machinery and clarify key aspects of CßG synthesis, revealing a distinct mechanism that uses a tyrosine-linked oligosaccharide intermediate in cycles of polymerization and processing of the glucan chain. Our research opens possibilities for combating pathogens that rely on polysaccharide virulence factors and may lead to synthetic biology approaches for producing complex cyclic sugars.


Assuntos
Agrobacterium tumefaciens , Glucosiltransferases , beta-Glucanas , Humanos , Agrobacterium tumefaciens/metabolismo , Brucella abortus/metabolismo , Microscopia Crioeletrônica , beta-Glucanas/metabolismo , Glucanos/metabolismo , Açúcares/metabolismo
4.
EMBO J ; 42(14): e112817, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37232029

RESUMO

The facultative intracellular pathogen Brucella abortus interacts with several organelles of the host cell to reach its replicative niche inside the endoplasmic reticulum. However, little is known about the interplay between the intracellular bacteria and the host cell mitochondria. Here, we showed that B. abortus triggers substantive mitochondrial network fragmentation, accompanied by mitophagy and the formation of mitochondrial Brucella-containing vacuoles during the late steps of cellular infection. Brucella-induced expression of the mitophagy receptor BNIP3L is essential for these events and relies on the iron-dependent stabilisation of the hypoxia-inducible factor 1α. Functionally, BNIP3L-mediated mitophagy appears to be advantageous for bacterial exit from the host cell as BNIP3L depletion drastically reduces the number of reinfection events. Altogether, these findings highlight the intricate link between Brucella trafficking and the mitochondria during host cell infection.


Assuntos
Brucella abortus , Mitofagia , Brucella abortus/metabolismo , Vacúolos/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias
5.
PLoS One ; 18(3): e0282803, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36893111

RESUMO

Correlative light and electron microscopy is a powerful tool to study the internal structure of cells. It combines the mutual benefit of correlating light (LM) and electron (EM) microscopy information. The EM images only contain contrast information. Therefore, some of the detailed structures cannot be specified from these images alone, especially when different cell organelle are contacted. However, the classical approach of overlaying LM onto EM images to assign functional to structural information is hampered by the large discrepancy in structural detail visible in the LM images. This paper aims at investigating an optimized approach which we call EM-guided deconvolution. This applies to living cells structures before fixation as well as previously fixed sample. It attempts to automatically assign fluorescence-labeled structures to structural details visible in the EM image to bridge the gaps in both resolution and specificity between the two imaging modes. We tested our approach on simulations, correlative data of multi-color beads and previously published data of biological samples.


Assuntos
Organelas , Humanos , Microscopia Eletrônica , Células HeLa
6.
Nat Struct Mol Biol ; 29(12): 1170-1177, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36456825

RESUMO

Polysaccharides play critical roles in bacteria, including the formation of protective capsules and biofilms and establishing specific host cell interactions. Their transport across membranes is often mediated by ATP-binding cassette (ABC) transporters, which utilize ATP to translocate diverse molecules. Cyclic ß-glucans (CßGs) are critical for host interaction of the Rhizobiales, including the zoonotic pathogen Brucella. CßGs are exported into the periplasmic space by the cyclic glucan transporter (Cgt). The interaction of an ABC transporter with a polysaccharide substrate has not been visualized so far. Here we use single-particle cryoelectron microscopy to elucidate the structures of Cgt from Brucella abortus in four conformational states. The substrate-bound structure reveals an unusual binding pocket at the height of the cytoplasmic leaflet, whereas ADP-vanadate models hint at an alternative mechanism of substrate release. Our work provides insights into the translocation of large, heterogeneous substrates and sheds light on protein-polysaccharide interactions in general.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Brucella abortus , beta-Glucanas , Trifosfato de Adenosina/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , beta-Glucanas/metabolismo , Brucella abortus/metabolismo , Microscopia Crioeletrônica , Glucanos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Polissacarídeos
7.
Front Microbiol ; 13: 913434, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910598

RESUMO

Bartonella spp. are Gram-negative facultative intracellular pathogens that infect diverse mammals and cause a long-lasting intra-erythrocytic bacteremia in their natural host. These bacteria translocate Bartonella effector proteins (Beps) into host cells via their VirB/VirD4 type 4 secretion system (T4SS) in order to subvert host cellular functions, thereby leading to the downregulation of innate immune responses. Most studies on the functional analysis of the VirB/VirD4 T4SS and the Beps were performed with the major zoonotic pathogen Bartonella henselae for which efficient in vitro infection protocols have been established. However, its natural host, the cat, is unsuitable as an experimental infection model. In vivo studies were mostly confined to rodent models using rodent-specific Bartonella species, while the in vitro infection protocols devised for B. henselae are not transferable for those pathogens. The disparities of in vitro and in vivo studies in different species have hampered progress in our understanding of Bartonella pathogenesis. Here we describe the murine-specific strain Bartonella taylorii IBS296 as a new model organism facilitating the study of bacterial pathogenesis both in vitro in cell cultures and in vivo in laboratory mice. We implemented the split NanoLuc luciferase-based translocation assay to study BepD translocation through the VirB/VirD4 T4SS. We found increased effector-translocation into host cells if the bacteria were grown on tryptic soy agar (TSA) plates and experienced a temperature shift immediately before infection. The improved infectivity in vitro was correlating to an upregulation of the VirB/VirD4 T4SS. Using our adapted infection protocols, we showed BepD-dependent immunomodulatory phenotypes in vitro. In mice, the implemented growth conditions enabled infection by a massively reduced inoculum without having an impact on the course of the intra-erythrocytic bacteremia. The established model opens new avenues to study the role of the VirB/VirD4 T4SS and the translocated Bep effectors in vitro and in vivo.

9.
PLoS Negl Trop Dis ; 16(7): e0010635, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35881641

RESUMO

BACKGROUND: Human brucellosis caused by the facultative intracellular pathogen Brucella spp. is an endemic bacterial zoonosis manifesting as acute or chronic infections with high morbidity. Treatment typically involves a combination therapy of two antibiotics for several weeks to months, but despite this harsh treatment relapses occur at a rate of 5-15%. Although poor compliance and reinfection may account for a fraction of the observed relapse cases, it is apparent that the properties of the infectious agent itself may play a decisive role in this phenomenon. METHODOLOGY/PRINCIPAL FINDINGS: We used B. abortus carrying a dual reporter in a macrophage infection model to gain a better understanding of the efficacy of recommended therapies in cellulo. For this we used automated fluorescent microscopy as a prime read-out and developed specific CellProfiler pipelines to score infected macrophages at the population and the single cell level. Combining microscopy of constitutive and induced reporters with classical CFU determination, we quantified the protective nature of the Brucella intracellular lifestyle to various antibiotics and the ability of B. abortus to persist in cellulo despite harsh antibiotic treatments. CONCLUSION/SIGNIFICANCE: We demonstrate that treatment of infected macrophages with antibiotics at recommended concentrations fails to fully prevent growth and persistence of B. abortus in cellulo, which may be explained by a protective nature of the intracellular niche(s). Moreover, we show the presence of bona fide intracellular persisters upon antibiotic treatment, which are metabolically active and retain the full infectious potential, therefore constituting a plausible reservoir for reinfection and relapse. In conclusion, our results highlight the need to extend the spectrum of models to test new antimicrobial therapies for brucellosis to better reflect the in vivo infection environment, and to develop therapeutic approaches targeting the persister subpopulation.


Assuntos
Brucella abortus , Brucelose , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Brucelose/tratamento farmacológico , Brucelose/microbiologia , Humanos , Macrófagos/microbiologia , Reinfecção
10.
Proc Natl Acad Sci U S A ; 119(25): e2202059119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35714289

RESUMO

The bacterial genus Bartonella comprises numerous emerging pathogens that cause a broad spectrum of disease manifestations in humans. The targets and mechanisms of the anti-Bartonella immune defense are ill-defined and bacterial immune evasion strategies remain elusive. We found that experimentally infected mice resolved Bartonella infection by mounting antibody responses that neutralized the bacteria, preventing their attachment to erythrocytes and suppressing bacteremia independent of complement or Fc receptors. Bartonella-neutralizing antibody responses were rapidly induced and depended on CD40 signaling but not on affinity maturation. We cloned neutralizing monoclonal antibodies (mAbs) and by mass spectrometry identified the bacterial autotransporter CFA (CAMP-like factor autotransporter) as a neutralizing antibody target. Vaccination against CFA suppressed Bartonella bacteremia, validating CFA as a protective antigen. We mapped Bartonella-neutralizing mAb binding to a domain in CFA that we found is hypervariable in both human and mouse pathogenic strains, indicating mutational antibody evasion at the Bartonella subspecies level. These insights into Bartonella immunity and immune evasion provide a conceptual framework for vaccine development, identifying important challenges in this endeavor.


Assuntos
Anticorpos Neutralizantes , Antígenos de Bactérias , Bacteriemia , Infecções por Bartonella , Bartonella , Sistemas de Secreção Tipo V , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Bacteriemia/imunologia , Bacteriemia/microbiologia , Bacteriemia/prevenção & controle , Vacinas Bacterianas/genética , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/uso terapêutico , Bartonella/genética , Bartonella/imunologia , Infecções por Bartonella/imunologia , Infecções por Bartonella/microbiologia , Infecções por Bartonella/prevenção & controle , Clonagem Molecular , Evasão da Resposta Imune , Camundongos , Sistemas de Secreção Tipo V/imunologia , Vacinação
11.
PLoS Pathog ; 18(5): e1010489, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35580143

RESUMO

Vertical transmission of Bartonella infection has been reported for several mammalian species including mice and humans. Accordingly, it is commonly held that acquired immunological tolerance contributes critically to the high prevalence of Bartonellae in wild-ranging rodent populations. Here we studied an experimental model of Bartonella infection in mice to assess the impact of maternal and newborn immune defense on vertical transmission and bacterial persistence in the offspring, respectively. Congenital infection was frequently observed in B cell-deficient mothers but not in immunocompetent dams, which correlated with a rapid onset of an antibacterial antibody response in infected WT animals. Intriguingly, B cell-deficient offspring with congenital infection exhibited long-term bacteremia whereas B cell-sufficient offspring cleared bacteremia within a few weeks after birth. Clearance of congenital Bartonella infection resulted in immunity against bacterial rechallenge, with the animals mounting Bartonella-neutralizing antibody responses of normal magnitude. These observations reveal a key role for humoral immune defense by the mother and offspring in preventing and eliminating vertical transmission. Moreover, congenital Bartonella infection does not induce humoral immune tolerance but results in anti-bacterial immunity, questioning the contribution of neonatal tolerance to Bartonella prevalence in wild-ranging rodents.


Assuntos
Bacteriemia , Infecções por Bartonella , Bartonella , Animais , Bacteriemia/microbiologia , Feminino , Transmissão Vertical de Doenças Infecciosas , Mamíferos , Camundongos , Placenta , Gravidez
12.
Microorganisms ; 9(8)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34442725

RESUMO

Proteins containing a FIC domain catalyze AMPylation and other post-translational modifications (PTMs). In bacteria, they are typically part of FicTA toxin-antitoxin modules that control conserved biochemical processes such as topoisomerase activity, but they have also repeatedly diversified into host-targeted virulence factors. Among these, Bartonella effector proteins (Beps) comprise a particularly diverse ensemble of FIC domains that subvert various host cellular functions. However, no comprehensive comparative analysis has been performed to infer molecular mechanisms underlying the biochemical and functional diversification of FIC domains in the vast Bep family. Here, we used X-ray crystallography, structural modelling, and phylogenetic analyses to unravel the expansion and diversification of Bep repertoires that evolved in parallel in three Bartonella lineages from a single ancestral FicTA toxin-antitoxin module. Our analysis is based on 99 non-redundant Bep sequences and nine crystal structures. Inferred from the conservation of the FIC signature motif that comprises the catalytic histidine and residues involved in substrate binding, about half of them represent AMP transferases. A quarter of Beps show a glutamate in a strategic position in the putative substrate binding pocket that would interfere with triphosphate-nucleotide binding but may allow binding of an AMPylated target for deAMPylation or another substrate to catalyze a distinct PTM. The ß-hairpin flap that registers the modifiable target segment to the active site exhibits remarkable structural variability. The corresponding sequences form few well-defined groups that may recognize distinct target proteins. The binding of Beps to promiscuous FicA antitoxins is well conserved, indicating a role of the antitoxin to inhibit enzymatic activity or to serve as a chaperone for the FIC domain before translocation of the Bep into host cells. Taken together, our analysis indicates a remarkable functional plasticity of Beps that is mostly brought about by structural changes in the substrate pocket and the target dock. These findings may guide future structure-function analyses of the highly versatile FIC domains.

13.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33723071

RESUMO

Small GTPases of the Ras-homology (Rho) family are conserved molecular switches that control fundamental cellular activities in eukaryotic cells. As such, they are targeted by numerous bacterial toxins and effector proteins, which have been intensively investigated regarding their biochemical activities and discrete target spectra; however, the molecular mechanism of target selectivity has remained largely elusive. Here we report a bacterial effector protein that selectively targets members of the Rac subfamily in the Rho family of small GTPases but none in the closely related Cdc42 or RhoA subfamilies. This exquisite target selectivity of the FIC domain AMP-transferase Bep1 from Bartonella rochalimae is based on electrostatic interactions with a subfamily-specific pair of residues in the nucleotide-binding G4 motif and the Rho insert helix. Residue substitutions at the identified positions in Cdc42 enable modification by Bep1, while corresponding Cdc42-like substitutions in Rac1 greatly diminish modification. Our study establishes a structural understanding of target selectivity toward Rac-subfamily GTPases and provides a highly selective tool for their functional analysis.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas rac de Ligação ao GTP/química , Proteínas rac de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Bartonella , Sítios de Ligação , Modelos Moleculares , Família Multigênica , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Proteínas rac de Ligação ao GTP/genética
14.
PLoS Pathog ; 17(1): e1008548, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33508040

RESUMO

Bartonellae are Gram-negative facultative-intracellular pathogens that use a type-IV-secretion system (T4SS) to translocate a cocktail of Bartonella effector proteins (Beps) into host cells to modulate diverse cellular functions. BepC was initially reported to act in concert with BepF in triggering major actin cytoskeletal rearrangements that result in the internalization of a large bacterial aggregate by the so-called 'invasome'. Later, infection studies with bepC deletion mutants and ectopic expression of BepC have implicated this effector in triggering an actin-dependent cell contractility phenotype characterized by fragmentation of migrating cells due to deficient rear detachment at the trailing edge, and BepE was shown to counterbalance this remarkable phenotype. However, the molecular mechanism of how BepC triggers cytoskeletal changes and the host factors involved remained elusive. Using infection assays, we show here that T4SS-mediated transfer of BepC is sufficient to trigger stress fiber formation in non-migrating epithelial cells and additionally cell fragmentation in migrating endothelial cells. Interactomic analysis revealed binding of BepC to a complex of the Rho guanine nucleotide exchange factor GEF-H1 and the serine/threonine-protein kinase MRCKα. Knock-out cell lines revealed that only GEF-H1 is required for mediating BepC-triggered stress fiber formation and inhibitor studies implicated activation of the RhoA/ROCK pathway downstream of GEF-H1. Ectopic co-expression of tagged versions of GEF-H1 and BepC truncations revealed that the C-terminal 'Bep intracellular delivery' (BID) domain facilitated anchorage of BepC to the plasma membrane, whereas the N-terminal 'filamentation induced by cAMP' (FIC) domain facilitated binding of GEF-H1. While FIC domains typically mediate post-translational modifications, most prominently AMPylation, a mutant with quadruple amino acid exchanges in the putative active site indicated that the BepC FIC domain acts in a non-catalytic manner to activate GEF-H1. Our data support a model in which BepC activates the RhoA/ROCK pathway by re-localization of GEF-H1 from microtubules to the plasma membrane.


Assuntos
Actinas/metabolismo , Proteínas de Bactérias/metabolismo , Bartonella/metabolismo , Membrana Celular/metabolismo , Proteína C/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Fibras de Estresse/fisiologia , Proteínas de Bactérias/genética , Citoesqueleto/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Células HeLa , Humanos , Proteína C/genética , Fatores de Troca de Nucleotídeo Guanina Rho/genética
15.
Front Microbiol ; 12: 762582, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975788

RESUMO

Bartonella spp. are facultative intracellular pathogens that infect a wide range of mammalian hosts including humans. The VirB/VirD4 type IV secretion system (T4SS) is a key virulence factor utilized to translocate Bartonella effector proteins (Beps) into host cells in order to subvert their functions. Crucial for effector translocation is the C-terminal Bep intracellular delivery (BID) domain that together with a positively charged tail sequence forms a bipartite translocation signal. Multiple BID domains also evolved secondary effector functions within host cells. The majority of Beps possess an N-terminal filamentation induced by cAMP (FIC) domain and a central connecting oligonucleotide binding (OB) fold. FIC domains typically mediate AMPylation or related post-translational modifications of target proteins. Some Beps harbor other functional modules, such as tandem-repeated tyrosine-phosphorylation (EPIYA-related) motifs. Within host cells the EPIYA-related motifs are phosphorylated, which facilitates the interaction with host signaling proteins. In this review, we will summarize our current knowledge on the molecular functions of the different domains present in Beps and highlight examples of Bep-dependent host cell modulation.

16.
Cell Host Microbe ; 27(3): 476-485.e7, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32101706

RESUMO

Chronically infecting pathogens avoid clearance by the innate immune system by promoting premature transition from an initial pro-inflammatory response toward an anti-inflammatory tissue-repair response. STAT3, a central regulator of inflammation, controls this transition and thus is targeted by numerous chronic pathogens. Here, we show that BepD, an effector of the chronic bacterial pathogen Bartonella henselae targeted to infected host cells, establishes an exceptional pathway for canonical STAT3 activation, thereby impairing secretion of pro-inflammatory TNF-α and stimulating secretion of anti-inflammatory IL-10. Tyrosine phosphorylation of EPIYA-related motifs in BepD facilitates STAT3 binding and activation via c-Abl-dependent phosphorylation of Y705. The tyrosine-phosphorylated scaffold of BepD thus represents a signaling hub for intrinsic STAT3 activation that is independent from canonical STAT3 activation via transmembrane receptor-associated Janus kinases. We anticipate that our findings on a molecular shortcut to STAT3 activation will inspire new treatment options for chronic infections and inflammatory diseases.


Assuntos
Proteínas de Bactérias/metabolismo , Bartonella henselae/imunologia , Interleucina-10/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Animais , Linhagem Celular , Citocinas/imunologia , Feminino , Janus Quinases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Células RAW 264.7 , Fator de Necrose Tumoral alfa/metabolismo
17.
BMC Bioinformatics ; 20(1): 564, 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31718539

RESUMO

BACKGROUND: Analysing large and high-dimensional biological data sets poses significant computational difficulties for bioinformaticians due to lack of accessible tools that scale to hundreds of millions of data points. RESULTS: We developed a novel machine learning command line tool called PyBDA for automated, distributed analysis of big biological data sets. By using Apache Spark in the backend, PyBDA scales to data sets beyond the size of current applications. It uses Snakemake in order to automatically schedule jobs to a high-performance computing cluster. We demonstrate the utility of the software by analyzing image-based RNA interference data of 150 million single cells. CONCLUSION: PyBDA allows automated, easy-to-use data analysis using common statistical methods and machine learning algorithms. It can be used with simple command line calls entirely making it accessible to a broad user base. PyBDA is available at https://pybda.rtfd.io.


Assuntos
Algoritmos , Biologia Computacional/métodos , Automação , Metodologias Computacionais , Células HeLa , Humanos , Processamento de Imagem Assistida por Computador , Aprendizado de Máquina
18.
Cell Microbiol ; 21(11): e13068, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31231937

RESUMO

The processes underlying host adaptation by bacterial pathogens remain a fundamental question with relevant clinical, ecological, and evolutionary implications. Zoonotic pathogens of the genus Bartonella constitute an exceptional model to study these aspects. Bartonellae have undergone a spectacular diversification into multiple species resulting from adaptive radiation. Specific adaptations of a complex facultative intracellular lifestyle have enabled the colonisation of distinct mammalian reservoir hosts. This remarkable host adaptability has a multifactorial basis and is thought to be driven by horizontal gene transfer (HGT) and recombination among a limited genus-specific pan genome. Recent functional and evolutionary studies revealed that the conserved Bartonella gene transfer agent (BaGTA) mediates highly efficient HGT and could thus drive this evolution. Here, we review the recent progress made towards understanding BaGTA evolution, function, and its role in the evolution and pathogenesis of Bartonella spp. We notably discuss how BaGTA could have contributed to genome diversification through recombination of beneficial traits that underlie host adaptability. We further address how BaGTA may counter the accumulation of deleterious mutations in clonal populations (Muller's ratchet), which are expected to occur through the recurrent transmission bottlenecks during the complex infection cycle of these pathogens in their mammalian reservoir hosts and arthropod vectors.


Assuntos
Bartonella/genética , Bartonella/patogenicidade , Transferência Genética Horizontal/genética , Adaptação Fisiológica/genética , Animais , Proteínas de Bactérias/genética , Bartonella/crescimento & desenvolvimento , Bartonella/metabolismo , Evolução Molecular , Transferência Genética Horizontal/fisiologia , Interações entre Hospedeiro e Microrganismos , Mutação , Recombinação Genética/genética , Origem de Replicação/genética , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/metabolismo
19.
mSphere ; 4(3)2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31243080

RESUMO

Brucella, the agent causing brucellosis, is a major zoonotic pathogen with worldwide distribution. Brucella resides and replicates inside infected host cells in membrane-bound compartments called Brucella-containing vacuoles (BCVs). Following uptake, Brucella resides in endosomal BCVs (eBCVs) that gradually mature from early to late endosomal features. Through a poorly understood process that is key to the intracellular lifestyle of Brucella, the eBCV escapes fusion with lysosomes by transitioning to the replicative BCV (rBCV), a replicative niche directly connected to the endoplasmic reticulum (ER). Despite the notion that this complex intracellular lifestyle must depend on a multitude of host factors, a holistic view on which of these components control Brucella cell entry, trafficking, and replication is still missing. Here we used a systematic cell-based small interfering RNA (siRNA) knockdown screen in HeLa cells infected with Brucella abortus and identified 425 components of the human infectome for Brucella infection. These include multiple components of pathways involved in central processes such as the cell cycle, actin cytoskeleton dynamics, or vesicular trafficking. Using assays for pathogen entry, knockdown complementation, and colocalization at single-cell resolution, we identified the requirement of the VPS retromer for Brucella to escape the lysosomal degradative pathway and to establish its intracellular replicative niche. We thus validated the VPS retromer as a novel host factor critical for Brucella intracellular trafficking. Further, our genomewide data shed light on the interplay between central host processes and the biogenesis of the Brucella replicative niche.IMPORTANCE With >300,000 new cases of human brucellosis annually, Brucella is regarded as one of the most important zoonotic bacterial pathogens worldwide. The agent causing brucellosis resides inside host cells within vacuoles termed Brucella-containing vacuoles (BCVs). Although a few host components required to escape the degradative lysosomal pathway and to establish the ER-derived replicative BCV (rBCV) have already been identified, the global understanding of this highly coordinated process is still partial, and many factors remain unknown. To gain deeper insight into these fundamental questions, we performed a genomewide RNA interference (RNAi) screen aiming at discovering novel host factors involved in the Brucella intracellular cycle. We identified 425 host proteins that contribute to Brucella cellular entry, intracellular trafficking, and replication. Together, this study sheds light on previously unknown host pathways required for the Brucella infection cycle and highlights the VPS retromer components as critical factors for the establishment of the Brucella intracellular replicative niche.


Assuntos
Brucella abortus/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Interações Hospedeiro-Patógeno , RNA Interferente Pequeno , Vacúolos/microbiologia , Brucella abortus/fisiologia , Replicação do DNA , Retículo Endoplasmático/microbiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Técnicas de Silenciamento de Genes , Genoma Bacteriano , Células HeLa , Ensaios de Triagem em Larga Escala , Humanos
20.
Front Microbiol ; 10: 921, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31130928

RESUMO

Bartonella spp. are facultative intracellular pathogens that infect a wide range of mammalian hosts including humans. In order to subvert cellular functions and the innate immune response of their hosts, these pathogens utilize a VirB/VirD4 type-IV-secretion (T4S) system to translocate Bartonella effector proteins (Beps) into host cells. Crucial for this process is the Bep intracellular delivery (BID) domain that together with a C-terminal stretch of positively charged residues constitutes a bipartite T4S signal. This function in T4S is evolutionarily conserved with BID domains present in bacterial toxins and relaxases. Strikingly, some BID domains of Beps have evolved secondary functions to modulate host cell and innate immune pathways in favor of Bartonella infection. For instance, BID domains mediate F-actin-dependent bacterial internalization, inhibition of apoptosis, or modulate cell migration. Recently, crystal structures of three BID domains from different Beps have been solved, revealing a conserved fold formed by a four-helix bundle topped with a hook. While the conserved BID domain fold might preserve its genuine role in T4S, the highly variable surfaces characteristic for BID domains may facilitate secondary functions. In this review, we summarize our current knowledge on evolutionary and structural traits as well as functional aspects of the BID domain with regard to T4S and pathogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...