Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(7): e29236, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38601592

RESUMO

The construction industry's rapid growth poses challenges tied to raw material depletion and increased greenhouse gas emissions. To address this, alternative materials like agricultural residues are gaining prominence due to their potential to reduce carbon emissions and waste generation. In this context this research optimizes the use of banana leaves ash as a partial cement substitution, focusing on durability, and identifying the ideal cement-to-ash ratio for sustainable concrete. For this purpose, concrete mixes were prepared with BLA replacing cement partially in different proportions i.e. (0 %, 5 %, 10 %, 15 %, & 20 %) and were analyzed for their physical, mechanical and Durability (Acid and Sulphate resistance) properties. Compressive strength, acid resistance and sulphate resistance testing continued for 90 days with the intervals of 7, 28 and 90 days. The results revealed that up to 10 % incorporation of BLA improved compressive strength by 10 %, while higher BLA proportions (up to 20 %) displayed superior performance in durability tests as compared to the conventional mix. The results reveal the potentials of banana leave ash to refine the concrete matrix by formation of addition C-S-H gel which leads towards a better performance specially in terms of durability aspect. Hence, banana leaf ash (BLA) is an efficient concrete ingredient, particularly up to 10 % of the mix. Beyond this threshold, it's still suitable for applications where extreme strength isn't the primary concern, because there may be a slight reduction in compressive strength.

2.
Heliyon ; 10(4): e26222, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38390169

RESUMO

Waste tyre rubber has become an environmental and health concern that needs to be sustainably managed to avoid fire hazards and save natural resources. This research work aims to study the structural behavior of glass fiber reinforced polymer (glass-FRP) reinforced rubberized concrete (GRC) compressive elements under monotonic axial compression loads. Nine GRC circular compressive elements with different axial and crosswise reinforcement ratios were fabricated. All the elements were 300 mm in diameter and 1200 mm in height. A 3D nonlinear finite element equation (FEM) was suggested for the GRC compressive elements using a commercial package ABAQUS. A parametric study has been done to examine the effect of various parameters of GRC elements. The test outcomes revealed that the ductility of GRC elements ameliorated with the lessening in the spaces of glass-FRP ties. The addition of rubberized concrete improved the ductility of GRC elements. The damage to GRC elements occurred due to the vertical cracking along the height of the elements. The estimates of FEM were in close agreement with the test outcomes. The suggested empirical equation depending on the 600 test elements, which considered the lateral confinement effect of FRP ties, presented higher accuracy than previous equations.

3.
PLoS One ; 18(11): e0293978, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38032941

RESUMO

One of the major problems that cause continual trouble in deep learning networks is that training a large network requires massive labelled datasets. The preparation of a massive labelled dataset is a cumbersome task and requires lot of human interventions. This paper proposes a novel generator network 'Sim2Real' transfer is a recent and fast-developing field in machine learning used to bridge the gap between simulated and real data. Training with simulated datasets often converges due to its size but fails to generalize real-world applications. Simulated datasets can be used to train and test deep learning models, enables the development and evaluation of new algorithms and architectures. By simulating road dataset, researchers can generate large amounts of realistic road-traffic dataset that can be used to study and understand several problems such as vehicular object tracking and classification, traffic situation analysis etc. The main advantage of such a transfer algorithm is to use the abundance of a simulated dataset to generate huge realistic-looking datasets to solve data-intense tasks. This work presents a novel, robust sim2real algorithm that converts the labels of a semantic segmentation map to a realistic-looking street view using the Cityscapes dataset and aims to achieve robust urban mobility for smart cities. Further, the generalizability of the Cycle Generative Adversarial Network (CycleGAN) architecture was tested by using an origami robot dataset for sim2real transfer. We show that the results were found to be qualitatively satisfactory for different traffic analysis applications. In addition, road perception was done using a lightweight SVM pipeline and evaluated on the KITTI dataset. We have incorporated Cycle Consistency Loss and Identity Loss as the metrics to evaluate the performance of the proposed Cycle GAN model. We inferred that the proposed Cycle GAN model provides an Identity loss of less than 0.2 in both the Cityscapes dataset and KITTI datasets. Also, we understand that the super-pixel resolution has a good impact on the quantitative results of the proposed Cycle GAN models.


Assuntos
Algoritmos , Benchmarking , Humanos , Cidades , Aprendizado de Máquina , Percepção , Processamento de Imagem Assistida por Computador
4.
Front Pharmacol ; 14: 1215706, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38034991

RESUMO

Purpose: The aim of this research is to investigate the factors that facilitate the adoption of artificial intelligence (AI) in order to establish effective human resource management (HRM) practices within the Indian pharmaceutical sector. Design/methodology/approach: A model explaining the antecedents of AI adoption for building effective HRM practices in the Indian pharmaceutical sector is proposed in this study. The proposed model is based on task-technology fit theory. To test the model, a two-step procedure, known as partial least squares structural equational modeling (PLS-SEM), was used. To collect data, 160 HRM employees from pharmacy firms from pan India were approached. Only senior and specialized HRM positions were sought. Findings: An examination of the relevant literature reveals factors such as how prepared an organization is, how people perceive the benefits, and how technological readiness influences AI adoption. As a result, HR systems may become more efficient. The PLS-SEM data support all the mediation hypothesized by proving both full and partial mediation, demonstrating the accuracy of the proposed model. Originality: There has been little prior research on the topic; this study adds a great deal to our understanding of what motivates human resource departments to adopt AI in the pharmaceutical companies of India. Furthermore, AI-related recommendations are made available to HRM based on the results of a statistical analysis.

5.
Sci Rep ; 13(1): 21140, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036570

RESUMO

Hybrid nanofluids offer higher stability, synergistic effects, and better heat transfer compared to simple nanofluids. Their higher thermal conductivity, lower viscosity, and interaction with magnetic fields make them ideal for various applications, including materials science, transportation, medical technology, energy, and fundamental physics. The governing partial differential equations are numerically solved by employing a finite volume approach, and the effects of various parameters on the nanofluid flow and thermal characteristics are systematically examined from the simulations based on a self-developed MATLAB code. The parameters included magnetic field strength, the Reynolds number, the nanoparticle volume fraction, and the number and position of the strips in which the magnetic field is localized. It has been noted that the magnetized field induces the spinning of the tri-hybrid nanoparticles, which generates the intricate structure of vortices in the flow. The local skin friction (CfRe) and the Nusselt number (Nu) increase significantly when the magnetic field is intensified. Moreover, adding more nanoparticles in the flow enhances both Nu and CfRe, but with different effects for different nanoparticles. Silver (Ag) shows the highest increase in both Nu (52%) and CfRe (110%), indicating strong thermal-fluid coupling. Alumina (Al2O3) and Titanium Dioxide (TiO2) show lower increases in both Nu (43% and 34%) and CfRe (14% and 10%), indicating weaker coupling in the flow. Finally, compared with the localized one, the uniform magnetic field has a minor effect on the flow and temperature distributions.

6.
Sci Rep ; 13(1): 15061, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37699946

RESUMO

The current study proposes a new strategy for using small hydroelectric turbines in downstream river branches with the least amount of construction and the lowest cost by comparing two different methods of installing the turbines, the first by installing the turbines at the river's bottom and the second by installing the turbines on floating boats. The methodology of this article is based on predicting the distribution of velocities through the watercourse using experimental data collected at various points in the river's depth, and then predicting the resulting electrical power for different sizes of turbines, as well as estimating the number of turbines for each row and the number of rows along the river. Therefore, Investigate the proposed systems. The proposed small hydropower system's economic viability and environmental impact are investigated in this article. According to the nature of the waterway, the best diameter of a turbine that can be used is 1.5 m based on water velocities and river depths. The proposed power plant generated 25.8 kW per single turbine row, with an estimated cost of produced power (0.035 USD/kWh) of approximately 20 turbines installed per row. Compared to other renewable energy sources, the proposed hydropower system is cost-effective and environmentally friendly, as generating electricity with the proposed small hydropower plant could reduce annual carbon dioxide emissions by 368 tones of CO2 per single turbine row.

7.
Chemosphere ; 334: 139008, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37230303

RESUMO

Considering the current crisis of fossil energies, the exploitation of renewables and green technologies is necessary and unavoidable. Additionally, the design and development of integrated energy systems with two or more output products and the maximum usage of thermal losses in order to improve efficiency can boost the yield and acceptability of the energy system. In this regard, this paper develops a comprehensive multi-aspect assessment of the operation of a new solar and biomass energies-driven multigeneration system (MGS). The main units installed in MGS are three electric energy generation units based on a gas turbine process, a solid oxide fuel cell unit (SOFCU) and an organic Rankine cycle unit (ORCU), a biomass energy conversion unit to useful thermal energy, a seawater conversion unit into useable freshwater, a unit for converting water and electricity into hydrogen energy and oxygen gas, a unit for converting solar energy into useful thermal energy (based on Fresnel collector), and a cooling load generation unit. The planned MGS has a novel configuration and layout that has not been considered by researchers recently. The current article is based on presenting a multi-aspect evaluation to study thermodynamic-conceptual, environmental and exergoeconomic analyzes. The outcomes indicated that the planned MGS can produce about 6.31 MW of electrical power and 0.49 MW of thermal power. Furthermore, MGS is able to produce various products such as potable water (∼0.977 kg/s), cooling load (∼0.16 MW), hydrogen energy (∼1.578 g/s) and sanitary water (∼0.957 kg/s). The total thermodynamic indexes were calculated as 78.13% and 47.72%, respectively. Also, the total investment and unit exergy costs were 47.16 USD per hour and 11.07 USD per GJ, respectively. Further, the content of CO2 emitted from the desgined system was equal to 10.59 kmol per MWh. A parametric study has been also developed to identify influencing parameters.


Assuntos
Dióxido de Carbono , Água Doce , Biomassa , Água , Hidrogênio
8.
Chemosphere ; 336: 139035, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37244560

RESUMO

In the present study, a biomass-based multi-purpose energy system that can generate power, desalinated water, hydrogen, and ammonia is presented. The gasification cycle, gas turbine, Rankine cycle, PEM electrolyzer, ammonia production cycle using the Haber-Bosch process, and MSF water desalination cycle are the primary subsystems of this power plant. On the suggested system, a thorough thermodynamic and thermoeconomic evaluation has been conducted. For the analysis, the system is first modeled and investigated from an energy point of view, after which it is similarly studied from an exergy point of view before the system is subjected to economic analysis (exergoeconomic analysis). The system is evaluated and modeled using artificial intelligence to aid in the system optimization process after energy, exergy, and economic modeling and analysis. The resulting model is then optimized using a genetic algorithm to maximize system efficiency and reduce system expenses. EES software does the first analysis. After that, it sends the data to MATLAB program for optimization and to see how operational factors affect thermodynamic performance and overall cost rate. To find the best solution with the maximum energy efficiency and lowest total cost, multi-objective optimization is used. In order to shorten computation time and speed up optimization, the artificial neural network acts as a middleman in the process. In order to identify the energy system's optimal point, the link between the objective function and the choice factors has been examined. The results show that increasing the flow of biomass enhances efficiency, output, and cost while raising the temperature of the gas turbine's input decreases cost while simultaneously boosting efficiency. Additionally, according to the system's optimization results, the power plant's cost and energy efficiency are 37% and 0.3950$/s, respectively, at the ideal point. The cycle's output is estimated at 18900 kW at this stage.


Assuntos
Amônia , Inteligência Artificial , Fenômenos Físicos , Temperatura Baixa , Água
9.
Chemosphere ; 336: 138985, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37247675

RESUMO

A hybrid energy cycle (HEC) based on biomass gasification can be suggested as an efficient, modern and low-carbon energy power plant. In the current article, a thermodynamic-conceptual design of a HEC based on biomass and solar energies has been developed in order to generate electric power, heat and hydrogen energy. The planned HEC consists of six main units: two electric energy production units, a heat recovery unit (HRU), a hydrogen energy generation cycle based on water electrolysis, a thermal power generation unit (based on LFR field), and a biofuel production unit (based on biomass gasification process). Conceptual analysis is based on the development of energy, exergy and exergoeconomic assessments. Besides that, the reduction rate of pollutant emission through the planned HEC compared to conventional power plants is presented. In the planned HEC, when hydrogen energy is not needed, excess hydrogen is feed into the combustion chamber to improve system performance and reduce the need for natural gas. Accordingly, the rate of polluting gases emitted from the cycle can be mitigated due to the reduction of fossil fuels consumption. Further, based on the machine learning technique (MLT), the level of biofuel produced from the mentioned process is estimated. In this regard, two algorithms (i.e., Support vector machine and Gaussian process regression) have been employed to develop the prediction model. The findings indicated that the considered HEC can produce about 10.2 MW of electricity, 153 kW of thermal power, and 71.8 kmol/h of hydrogen energy. In both training and testing sets, the Support vector machine model exhibits better behavior compared the two Gaussian process regression model. Based on machine learning technique, with increasing gasification pressure, the level of biofuel obtained from the process does not increase significantly.


Assuntos
Biocombustíveis , Gás Natural , Biomassa , Carbono , Hidrogênio , Termodinâmica
10.
PLoS One ; 18(4): e0284761, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37093880

RESUMO

This study conducted experimental and machine learning (ML) modeling approaches to investigate the impact of using recycled glass powder in cement mortar in an acidic environment. Mortar samples were prepared by partially replacing cement and sand with glass powder at various percentages (from 0% to 15%, in 2.5% increments), which were immersed in a 5% sulphuric acid solution. Compressive strength (CS) tests were conducted before and after the acid attack for each mix. To create ML-based prediction models, such as bagging regressor and random forest, for the CS prediction following the acid attack, the dataset produced through testing methods was utilized. The test results indicated that the CS loss of the cement mortar might be reduced by utilizing glass powder. For maximum resistance to acidic conditions, the optimum proportion of glass powder was noted to be 10% as cement, which restricted the CS loss to 5.54%, and 15% as a sand replacement, which restricted the CS loss to 4.48%, compared to the same mix poured in plain water. The built ML models also agreed well with the test findings and could be utilized to calculate the CS of cementitious composites incorporating glass powder after the acid attack. On the basis of the R2 value (random forest: 0.97 and bagging regressor: 0.96), the variance between tests and forecasted results, and errors assessment, it was found that the performance of both the bagging regressor and random forest models was similarly accurate.


Assuntos
Cimentos Ósseos , Areia , Força Compressiva , Vidro , Cimentos de Ionômeros de Vidro , Pós
11.
Chemosphere ; 329: 138583, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37019408

RESUMO

This work presented modeling and simulation of CO2 from natural gas. One of the most promising technologies is Pressure Swing Adsorption (PSA), which is an energy-efficient and cost-effective process for separating and capturing CO2 from industrial processes and power plants. This paper provides an overview of the PSA process and its application for CO2 capture, along with a discussion of its advantages, limitations, and future research directions. This process is pressure swing adsorption (PSA) with four adsorption beds. The adsorption bed columns fill with activated carbon as adsorbent. In this simulation momentum, mass and energy balance are solved simultaneously. The process was designed with two beds in adsorption conditions and the other two beds in desorption conditions. The desorption cycle includes blow-down and purge steps. The linear driving force (LDF) estimates the adsorption rate in modeling this process. The extended Langmuir isotherm is used for the equilibrium between solid and gas phases. The temperature changes by heat transfer from the gas phase to solid and axial heat dispersion. The set of partial differential equations is solved using implicit finite difference.


Assuntos
Dióxido de Carbono , Gás Natural , Carvão Vegetal , Adsorção , Temperatura Alta
12.
Chemosphere ; 327: 138454, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36940831

RESUMO

In this work, a novel biomass gasifier combined energy system was offered for potable water, heating load, and power generation. The system included a gasifier, an S-CO2 cycle, a combustor, a domestic water heater, and thermal desalination unit. The plant was evaluated from various aspects, i.e., energetic, energetic, exergo-economic, sustainability, and environmental. To this aim, modeling of the suggested system was conducted by EES software; then, a parametric inquiry was carried out to detect the critical performance parameters, considering an environmental impact indicator. The results showed that the freshwater rate, Levelized CO2 emissions, total cost, and sustainability index of 21.19 kg s-1, 0.563 t.MWh-1, 13.13 $.GJ-1, and 1.53 were acquired, each. Moreover, the combustion chamber is a major fount in the irreversibility of the system. Besides, the energetic and exergetic efficiencies were computed at 89.51% and 40.87%. Overall, the offered water and energy-based waste system showed great functionality in terms of thermodynamic, economic, sustainability, and environmental standpoints by enhancing the gasifier temperature.


Assuntos
Meio Ambiente , Água , Temperatura , Termodinâmica
13.
Materials (Basel) ; 16(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36614766

RESUMO

The creation of sustainable composites reinforced with natural fibers has recently drawn the interest of both industrial and academics. Basalt fiber (BF) stands out as the most intriguing among the natural fibers that may be utilized as reinforcement due to their characteristics. Numerous academics have conducted many tests on the strength, durability, temperature, and microstructure characteristics of concrete reinforced with BF and have found promising results. However, because the information is dispersed, readers find it problematic to assess the advantages of BF reinforced concrete, which limits its applications. Therefore, a condensed study that provides the reader with an easy route and summarizes all pertinent information is needed. The purpose of this paper (Part II) is to undertake a compressive assessment of basalt fiber reinforced concrete's durability features. The results show that adding BF significantly increased concrete durability. The review also identifies a research deficiency that must be addressed before BF is used in practice.

14.
Polymers (Basel) ; 14(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36235971

RESUMO

Lateral reinforcement has a significant impact on the strength and ductility of concrete. Extra confinement is provided in this project by carbon fiber reinforced polymer (CFRP) sheets wrapped around the outside of reinforced concrete (RC) beams. To determine the failure criteria and maximum load-carrying capacity of beams, numerous specimens were cast and tested in a flexural testing machine. This paper presents the results of an experimental investigation of functionally damaged reinforced concrete beams repaired in flexure with CFRP sheets. The most essential variable in this study is the CFRP sheet scheme, and seven different strengthening schemes (B1 to B7) were explored in the experimental program. In conclusion, the findings of the study showed that flexural retrofitting of reinforced concrete beams with CFRP sheets is functionally effective, with restored strength and stiffness values roughly equivalent to or greater than those of the control beam (CB1). The efficiency of the flexural retrofitting mechanism appears to vary depending on the layout of the CFRP sheet. Steel rupture and concrete crushing were shown to be the most common failure modes in the investigation, causing CFRP sheets to break in retrofitted beams.

15.
Materials (Basel) ; 15(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36295347

RESUMO

The partial replacement of cement in concrete with other building materials has come to light because of research on industrial waste and sustainable building practices. Concrete is made more affordable by using such components, and it also helps to ease disposal worries. Ash made by burning wood and other wood products is one example of such a substance. Many researchers focused on the utilization of wooden ash (WA) as a construction material. However, information is scattered, and no one can easily judge the impact of WA on concrete properties which restrict its use. Therefore, a details review is required which collect the past and current progress on WA as a construction material. relevant information. This review aims to collect all the relevant information including the general back of WA, physical and chemical aspects of WA, the impact of WA on concrete fresh properties, strength properties, and durability aspects in addition to microstructure analysis. The results indicate the WA decreased the slump and increased the setting time. Strength and durability properties improved with the substitution of WA due to pozzolanic reaction and micro-filling effects. However, the optimum dose is important. Different research recommends different optimum doses depending on source mix design etc. However, the majority of researcher suggests a 10% optimum substitution of WA. The review also concludes that, although WA has the potential to be used as a concrete ingredient but less researchers focused on WA as compared to other waste materials such as fly ash and silica fume etc.

16.
Materials (Basel) ; 15(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36295415

RESUMO

The low tensile capacity of concrete often results in brittle failure without any warning. One way to cope with this issue is to add fibers and essentially improve the tensile strength (TS) behavior of concrete and offset its undesirable brittle failure. In recent investigations, basalt fibers (BFs), as compared to a variety of other kinds of fiber, have attracted the attention of researchers. In that respect, BFs exhibit several benefits, such as excellent elastic properties, great strength, high elastic modulus, higher thermal stability, and decent chemical stability. Although many researchers have reported that BFs can be embedded in concrete to improve the tensile capacity, a more profound understanding of its contribution is still needed. However, the information is scattered and it is difficult for the reader to identify the benefits of BFs. Therefore, a detailed assessment is essential to summarize all relevant information and provide an easy path for the reader. This review (part Ⅰ) summarizes all the relevant information, including flow properties, strength properties, and failure modes. Results reveal that BFs can greatly enhance the strength properties and change the brittle nature of concrete to one of ductility. However, it unfavorably impacts the flowability of concrete. Furthermore, the optimal proportion is shown to be important as a higher dose can adversely affect the strength of concrete, due to a deficiency of flowability. The typical range of the ideal incorporation of BFs varies from 0.5 to 1.5%. Finally, the review also indicates the research gap for future research studies that must be cautiously explored before being used in the real world.

17.
Materials (Basel) ; 15(19)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36233969

RESUMO

Alkali-silica reaction (ASR) is one of the major durability issues that affect the material degradation and structural performance, compromising the service life of concrete structures. Therefore, this study was planned to investigate the potential of ASR for locally available unexplored and vastly used aggregates, as per ASTM C1260. Aggregates from five different sources (Shalozan, Abbotabad, Orakzai, Swabi and Sada) were procured from their respective crusher sites. Mineralogical components of these aggregates were studied using the petrographic analysis. Cube, prism and mortar bar specimens were cast using mixture design in accordance with ASTM C1260 and placed in sodium hydroxide solution at 80 °C for 90 days. Identical specimens were also cured in water for the purpose of comparison. It was observed that mortar bar expansion of Orakzai aggregate was higher among the other tested aggregates and greater than 0.20% at 28 days, indicating the reactive nature according to ASTM C1260. Petrographic analysis also revealed the presence of reactive silica (quartzite) in the tested Orakzai source. It was observed that the compressive and flexural strengths of specimens exposed to ASR conducive environment was lower than the identical specimens placed in water. For instance, an approximately 9% decrease in compressive strength was observed for Orakzai aggregates exposed to ASR environment at 90 days compared to similar specimens placed in water curing. Moreover, microstructural analysis showed the development of micro-cracks for specimens incorporating Orakzai source aggregates. This study assists the construction stakeholders for the potential of unexplored local aggregates with regard to ASR before its utilization in mega construction projects.

18.
Materials (Basel) ; 15(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36143547

RESUMO

The need for low-cost raw materials is driven by the fact that iron ore tailings, a prevalent kind of hazardous solid waste, have created major environmental issues. Although many studies have focused on using iron ore tailing (IOT) in concrete and have reported positive results, readers may find it difficult to accurately assess the behaviors of IOT in concrete due to the scattered nature of the information. Therefore, a comprehensive assessment of IOT in concrete is necessary. This paper thoroughly reviews the characteristics of concrete that contains IOT such as fresh properties, mechanical properties and durability at different age of curing. The outcome of this review indicates that by using IOT, concrete's mechanical properties and durability improved, but its flowability decreased. Compressive strength of concrete with 20% substitution of IOT is 14% more than reference concrete. Furthermore, up to 40% substitution of IOT produces concrete that has sufficient flowability and compactability. Scan electronic microscopy results indicate a weak interfacial transition zone (ITZ). The optimum IOT dosage is important since a greater dose may decrease the strength properties and durability owing to a lack of fluidity. Depending on the physical and chemical composition of IOT, the average value of optimum percentages ranges from 30 to 40%. The assessment also recommends areas of unsolved research for future investigations.

19.
Polymers (Basel) ; 14(18)2022 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-36145944

RESUMO

This study aims to investigate the two-way shear strength of concrete slabs with FRP reinforcements. Twenty-one strength models were briefly outlined and compared. In addition, information on a total of 248 concrete slabs with FRP reinforcements were collected from 50 different research studies. Moreover, behavior trends and correlations between their strength and various parameters were identified and discussed. Strength models were compared to each other with respect to the experimentally measured strength, which were conducted by comparing overall performance versus selected basic variables. Areas of future research were identified. Concluding remarks were outlined and discussed, which could help further the development of future design codes. The ACI is the least consistent model because it does not include the effects of size, dowel action, and depth-to-control perimeter ratio. While the EE-b is the most consistent model with respect to the size effect, concrete compressive strength, depth to control perimeter ratio, and the shear span-to-depth ratio. This is because of it using experimentally observed behavior as well as being based on mechanical bases.

20.
Materials (Basel) ; 15(17)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36079534

RESUMO

According to the authors' best information, the majority of research focuses on other waste materials, such as recycling industrial waste (glass, silica fume, marble and waste foundry sand), etc. However, some researchers suggest dune sand as an alternative material for concrete production, but knowledge is still scarce. Therefore, a comprehensive review is required on dune sand to evaluate its current progress as well as its effects on the strength and durability properties of concrete. The review presents detailed literature on dune sand in concrete. The important characteristics of concrete such as slump, compressive, flexural, cracking behaviors, density, water absorption and sulfate resistance were considered for analysis. Results indicate that dune sand can be used in concrete up to 40% without any negative effect on strength and durability. The negative impact of dune sand on strength and durability was due to poor grading and fineness, which restricts the complete (100%) substation of dune sand. Furthermore, a decrease in flowability was observed. Finally, the review highlights the research gap for future studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA