Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmacy (Basel) ; 11(2)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37104075

RESUMO

Patients with chronic kidney disease (CKD) stage 3-5 are polypharmacy patients. Many of these drugs are metabolized by cytochrome P450 (CYP450) and CYP450. Genetic polymorphism is well known to result in altered drug metabolism capacity. This study determined the added value of pharmacogenetic testing to the routine medication evaluation in polypharmacy patients with CKD. In adult outpatient polypharmacy patients with CKD3-5 disease, a pharmacogenetic profile was determined. Then, automated medication surveillance for gene-drug interactions was performed based on the pharmacogenetic profile and the patients' current prescriptions. Of all identified gene-drug interactions, the hospital pharmacist and the treating nephrologist together assessed clinical relevance and necessity of a pharmacotherapeutic intervention. The primary endpoint of the study was the total number of applied pharmacotherapeutic interventions based on a relevant gene-drug interaction. A total of 61 patients were enrolled in the study. Medication surveillance resulted in a total of 66 gene-drug interactions, of which 26 (39%) were considered clinically relevant. This resulted in 26 applied pharmacotherapeutic interventions in 20 patients. Systematic pharmacogenetic testing enables pharmacotherapeutic interventions based on relevant gene-drug interactions. This study showed that pharmacogenetic testing adds to routine medication evaluation and could lead to optimized pharmacotherapy in CKD patients.

2.
Lung Cancer ; 178: 28-36, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36773458

RESUMO

OBJECTIVES: Pathologic subtyping of tissue biopsies is the gold standard for the diagnosis of lung cancer (LC), which could be complicated in cases of e.g. inconclusive tissue biopsies or unreachable tumors. The diagnosis of LC could be supported in a minimally invasive manner using protein tumor markers (TMs) and circulating tumor DNA (ctDNA) measured in liquid biopsies (LBx). This study evaluates the performance of LBx-based decision-support algorithms for the diagnosis of LC and subtyping into small- and non-small-cell lung cancer (SCLC and NSCLC) aiming to directly impact clinical practice. MATERIALS AND METHODS: In this multicenter prospective study (NL9146), eight protein TMs (CA125, CA15.3, CEA, CYFRA 21-1, HE4, NSE, proGRP and SCCA) and ctDNA mutations in EGFR, KRAS and BRAF were analyzed in blood of 1096 patients suspected of LC. The performance of individual and combined TMs to identify LC, NSCLC or SCLC was established by evaluating logistic regression models at pre-specified positive predictive values (PPV) of ≥95% or ≥98%. The most informative protein TMs included in the multi-parametric models were selected by recursive feature elimination. RESULTS: Single TMs could identify LC, NSCLC and SCLC patients with 46%, 25% and 40% sensitivity, respectively, at pre-specified PPVs. Multi-parametric models combining TMs and ctDNA significantly improved sensitivities to 65%, 67% and 50%, respectively. CONCLUSION: In patients suspected of LC, the LBx-based decision-support algorithms allowed identification of about two-thirds of all LC and NSCLC patients and half of SCLC patients. These models therefore show clinical value and may support LC diagnostics, especially in patients for whom pathologic subtyping is impossible or incomplete.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Estudos Prospectivos , Biomarcadores Tumorais , Fosfopiruvato Hidratase , Biópsia Líquida
3.
Eur J Cancer ; 162: 148-157, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34998046

RESUMO

AIM: To determine the safety, feasibility, pharmacokinetics, and cost of UGT1A1 genotype-guided dosing of irinotecan. PATIENTS AND METHODS: In this prospective, multicentre, non-randomised study, patients intended for treatment with irinotecan were pre-therapeutically genotyped for UGT1A1∗28 and UGT1A1∗93. Homozygous variant carriers (UGT1A1 poor metabolisers; PMs) received an initial 30% dose reduction. The primary endpoint was incidence of febrile neutropenia in the first two cycles of treatment. Toxicity in UGT1A1 PMs was compared to a historical cohort of UGT1A1 PMs treated with full dose therapy, and to UGT1A1 non-PMs treated with full dose therapy in the current study. Secondary endpoints were pharmacokinetics, feasibility, and costs. RESULTS: Of the 350 evaluable patients, 31 (8.9%) patients were UGT1A1 PM and received a median 30% dose reduction. The incidence of febrile neutropenia in this group was 6.5% compared to 24% in historical UGT1A1 PMs (P = 0.04) and was comparable to the incidence in UGT1A1 non-PMs treated with full dose therapy. Systemic exposure of SN-38 of reduced dosing in UGT1A1 PMs was still slightly higher compared to a standard-dosed irinotecan patient cohort (difference: +32%). Cost analysis showed that genotype-guided dosing was cost-saving with a cost reduction of €183 per patient. CONCLUSION: UGT1A1 genotype-guided dosing significantly reduces the incidence of febrile neutropenia in UGT1A1 PM patients treated with irinotecan, results in a therapeutically effective systemic drug exposure, and is cost-saving. Therefore, UGT1A1 genotype-guided dosing of irinotecan should be considered standard of care in order to improve individual patient safety.


Assuntos
Neutropenia Febril , Glucuronosiltransferase , Camptotecina/efeitos adversos , Custos e Análise de Custo , Genótipo , Glucuronosiltransferase/genética , Humanos , Irinotecano/efeitos adversos , Estudos Prospectivos
4.
Sci Transl Med ; 13(603)2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34290055

RESUMO

Pharmacogenomics is a key component of personalized medicine that promises safer and more effective drug treatment by individualizing drug choice and dose based on genetic profiles. In clinical practice, genetic biomarkers are used to categorize patients into *-alleles to predict CYP450 enzyme activity and adjust drug dosages accordingly. However, this approach leaves a large part of variability in drug response unexplained. Here, we present a proof-of-concept approach that uses continuous-scale (instead of categorical) assignments to predict enzyme activity. We used full CYP2D6 gene sequences obtained with long-read amplicon-based sequencing and cytochrome P450 (CYP) 2D6-mediated tamoxifen metabolism data from a prospective study of 561 patients with breast cancer to train a neural network. The model explained 79% of interindividual variability in CYP2D6 activity compared to 54% with the conventional *-allele approach, assigned enzyme activities to known alleles with previously reported effects, and predicted the activity of previously uncharacterized combinations of variants. The results were replicated in an independent cohort of tamoxifen-treated patients (model R 2 adjusted = 0.66 versus *-allele R 2 adjusted = 0.35) and a cohort of patients treated with the CYP2D6 substrate venlafaxine (model R 2 adjusted = 0.64 versus *-allele R 2 adjusted = 0.55). Human embryonic kidney cells were used to confirm the effect of five genetic variants on metabolism of the CYP2D6 substrate bufuralol in vitro. These results demonstrate the advantage of a continuous scale and a completely phased genotype for prediction of CYP2D6 enzyme activity and could potentially enable more accurate prediction of individual drug response.


Assuntos
Citocromo P-450 CYP2D6 , Preparações Farmacêuticas , Alelos , Citocromo P-450 CYP2D6/genética , Genótipo , Humanos , Estudos Prospectivos , Tamoxifeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...