Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37687498

RESUMO

Biodegradable Magnesium (Mg) implants are promising alternatives to permanent metallic prosthesis. To improve the biocompatibility and with the aim of degradation control, we provided Plasma Electrolytic Oxidation (PEO) of pure Mg implant in silicate-based solution with NaOH (S1 250 V) and Ca(OH)2 (S2 300 V). Despite the well-structured surface, S1 250 V implants induced enormous innate immunity reaction with the prevalence of neutrophils (MPO+) and M1-macrophages (CD68+), causing secondary alteration and massive necrosis in the peri-implant area in a week. This reaction was also accompanied by systemic changes in visceral organs affecting animals' survival after seven days of the experiment. In contrast, S2 300 V implantation was associated with focal lymphohistiocytic infiltration and granulation tissue formation, defining a more favorable outcome. This reaction was associated with the prevalence of M2-macrophages (CD163+) and high density of αSMA+ myofibroblasts, implying a resolution of inflammation and effective tissue repair at the site of the implantation. At 30 days, no remnants of S2 300 V implants were found, suggesting complete resorption with minor histological changes in peri-implant tissues. In conclusion, Ca(OH)2-contained silicate-based solution allows generating biocompatible coating reducing toxicity and immunogenicity with appropriate degradation properties that make it a promising candidate for medical applications.

2.
Nanomaterials (Basel) ; 13(12)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37368306

RESUMO

Maxillary sinus augmentation is a commonly used procedure for the placement of dental implants. However, the use of natural and synthetic materials in this procedure has resulted in postoperative complications ranging from 12% to 38%. To address this issue, we developed a novel calcium deficient HA/ß-TCP bone grafting nanomaterial using a two-step synthesis method with appropriate structural and chemical parameters for sinus lifting applications. We demonstrated that our nanomaterial exhibits high biocompatibility, enhances cell proliferation, and stimulates collagen expression. Furthermore, the degradation of ß-TCP in our nanomaterial promotes blood clot formation, which supports cell aggregation and new bone growth. In a clinical trial involving eight cases, we observed the formation of compact bone tissue 8 months after the operation, allowing for the successful installation of dental implants without any early postoperative complications. Our results suggest that our novel bone grafting nanomaterial has the potential to improve the success rate of maxillary sinus augmentation procedures.

3.
ACS Appl Mater Interfaces ; 15(16): 19863-19876, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37041124

RESUMO

Dental implants have become a routine, affordable, and highly reliable technology to replace tooth loss. In this regard, titanium and its alloys are the metals of choice for the manufacture of dental implants because they are chemically inert and biocompatible. However, for special cohorts of patients, there is still a need for improvements, specifically to increase the ability of implants to integrate into the bone and gum tissues and to prevent bacterial infections that can subsequently lead to peri-implantitis and implant failures. Therefore, titanium implants require sophisticated approaches to improve their postoperative healing and long-term stability. Such treatments range from sandblasting to calcium phosphate coating, fluoride application, ultraviolet irradiation, and anodization to increase the bioactivity of the surface. Plasma electrolytic oxidation (PEO) has gained popularity as a method for modifying metal surfaces and delivering the desired mechanical and chemical properties. The outcome of PEO treatment depends on the electrochemical parameters and composition of the bath electrolyte. In this study, we investigated how complexing agents affect the PEO surfaces and found that nitrilotriacetic acid (NTA) can be used to develop efficient PEO protocols. The PEO surfaces generated with NTA in combination with sources of calcium and phosphorus were shown to increase the corrosion resistance of the titanium substrate. They also support cell proliferation and reduce bacterial colonization and, hence, lead to a reduction in failed implants and repeated surgeries. Moreover, NTA is an ecologically favorable chelating agent. These features are necessary for the biomedical industry to be able to contribute to the sustainability of the public healthcare system. Therefore, NTA is proposed to be used as a component of the PEO bath electrolyte to obtain bioactive surface layers with properties desired for next-generation dental implants.


Assuntos
Implantes Dentários , Titânio , Humanos , Titânio/química , Ácido Nitrilotriacético , Propriedades de Superfície , Oxirredução , Metais , Ligas , Eletrólitos , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química
4.
Contemp Oncol (Pozn) ; 26(3): 239-246, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36381667

RESUMO

Introduction: Patients with lung cancer receive treatment according to National Cancer Comprehensive Network (NCCN) standards. However, disease recurrence is reported in about 30% of patients during the first five years. Our study aimed to establish independent predictors of lung cancer recurrence. Material and methods: 104 patients with definitive treatment for non-small-cell lung carcinoma receiving standard adjuvant chemotherapy in the period 2014-2018 in our cancer center were retrospectively reviewed. The prognostic significance of five routine immunohistochemical (IHC) markers was examined. Results: During the follow-up period disease recurrence occurred in 42 (40.4%) of the 104 enrolled patients. The median recurrence-free survival was 56.3 months, range 4-84.0 months (95% CI = 46.866-65.683). The recurrence-free survival rate was 58.8%. The frequencies of locoregional recurrence, lung recurrence, kidney, bone, lymph nodes of the neck, liver, and brain recurrence were 23.8%, 21.5%, 16.7%, 9.5%, 9.5%, 9.5% and 9.5%, respectively. Conclusions: Using the Cox regression model, category T, histological differentiation, and smoking status were identified as independent predictors of disease recurrence. The studied biological markers (PD-L1, Ki67, p53, epidermal growth factor receptor, and ALK) did not help the model predict disease recurrence. For statistical reliability, it is necessary to conduct a study on a larger cohort of patients and compare the mutual influence of several biomarkers.

5.
Biomedicines ; 9(6)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34064090

RESUMO

The application of chitosan (Ch) as a promising biopolymer with hemostatic properties and high biocompatibility is limited due to its prolonged degradation time, which, in turn, slows the repair process. In the present research, we aimed to develop new technologies to reduce the biodegradation time of Ch-based materials for hemostatic application. This study was undertaken to assess the biocompatibility and hemostatic and tissue-regeneration performance of Ch-PEO-copolymer prepared by electrospinning technique. Chitosan electrospinning membranes (ChEsM) were made from Ch and polyethylene oxide (PEO) powders for rich high-porous material with sufficient hemostatic parameters. The structure, porosity, density, antibacterial properties, in vitro degradation and biocompatibility of ChEsM were evaluated and compared to the conventional Ch sponge (ChSp). In addition, the hemostatic and bioactive performance of both materials were examined in vivo, using the liver-bleeding model in rats. A penetrating punch biopsy of the left liver lobe was performed to simulate bleeding from a non-compressible irregular wound. Appropriately shaped ChSp or ChEsM were applied to tissue lesions. Electrospinning allows us to produce high-porous membranes with relevant ChSp degradation and swelling properties. Both materials demonstrated high biocompatibility and hemostatic effectiveness in vitro. However, the antibacterial properties of ChEsM were not as good when compared to the ChSp. In vivo studies confirmed superior ChEsM biocompatibility and sufficient hemostatic performance, with tight interplay with host cells and tissues. The in vivo model showed a higher biodegradation rate of ChEsM and advanced liver repair.

6.
Mater Sci Eng C Mater Biol Appl ; 119: 111607, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33321651

RESUMO

Plasma Electrolytic Oxidation (PEO) is as a promising technique to modify metal surfaces by application of oxide ceramic coatings with appropriate physical, chemical and biological characteristics. Therefore, objective of this research was to find the simplest settings, yet able to produce relevant bioactive implant surfaces layers on Ti implants by means of PEO. We show that an electrolyte containing potassium dihydrogen phosphate as a source of P and either calcium hydroxide or calcium formate as a source of Ca in combination with a chelating agent, ethylenediamine tetraacetic acid (EDTA), is suitable for PEO to deliver coatings with desired properties. We determined surface morphology, roughness, wettability, chemical and phase composition of titanium after the PEO process. To investigate biocompatibility and bacterial properties of the PEO oxide coatings we used microbial and cell culture tests. The electrolyte based on Ca(OH)2 and EDTA promotes active crystallization of apatites after PEO processing of the Ti implants. The PEO layers can increase electrochemical corrosion resistance. The PEO can be potentially used for development of bioactive surfaces with increased support of eukaryotic cells while inhibiting attachment and growth of bacteria without use of antibacterial agents.


Assuntos
Implantes Dentários , Titânio , Cálcio , Cerâmica/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Oxirredução , Fósforo , Propriedades de Superfície , Titânio/farmacologia
7.
Biomed Eng Lett ; 10(4): 621-631, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33194252

RESUMO

Bacterial biofilm formation and antibiotic resistance are the main factors of surgical wound complications. Traditional treatments in some cases cannot provide complete bacterial eradication and new therapeutic approaches should be developed to overcome antibiotic resistance. Silver nanoparticles (AgNPs) can be the first choice for bacteria treatment but their clinical application is limited due to toxic effects. Combination of AgNPs with the low-frequency ultrasound (US) treatment expected to decrease toxicity and leads to the facilitation of wound healing. In current research we investigated the antibacterial activity of AgNPs per se and in combination with low-frequency US, assessed the cytotoxicity of AgNPs on human dermal fibroblasts and finally, wound healing was evaluated in purulent wound model (96 white laboratory rats) applying AgNPs and US as a treatment strategy. Our results demonstrate no toxic effect of AgNPs in minimum inhibitory concentrations and show increasing their antibacterial effectiveness after US application. The combination of low-frequency US and AgNPs provides reduction of the inflammatory reaction, microorganism elimination and leads to facilitation of new tissue formation with complete epithelization. All effects were significant over the Chlorhexidine treatment, monotherapy with AgNPs or US. Advanced effectiveness of complex therapy opens new perspectives for clinical application of AgNPs solution accompanied by US.

8.
Materials (Basel) ; 13(18)2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899716

RESUMO

High strength, excellent corrosion resistance, high biocompatibility, osseointegration ability, and low bacteria adhesion are critical properties of metal implants. Additionally, the implant surface plays a critical role as the cell and bacteria host, and the development of a simultaneously antibacterial and biocompatible implant is still a crucial challenge. Copper nanoparticles (CuNPs) could be a promising alternative to silver in antibacterial surface engineering due to low cell toxicity. In our study, we assessed the biocompatibility and antibacterial properties of a PEO (plasma electrolytic oxidation) coating incorporated with CuNPs (Cu nanoparticles). The structural and chemical parameters of the CuNP and PEO coating were studied with TEM/SEM (Transmission Electron Microscopy/Scanning Electron Microscopy), EDX (Energy-Dispersive X-ray Dpectroscopy), and XRD (X-ray Diffraction) methods. Cell toxicity and bacteria adhesion tests were used to prove the surface safety and antibacterial properties. We can conclude that PEO on a ZrNb alloy in Ca-P solution with CuNPs formed a stable ceramic layer incorporated with Cu nanoparticles. The new surface provided better osteoblast adhesion in all time-points compared with the nontreated metal and showed medium grade antibacterial activities. PEO at 450 V provided better antibacterial properties that are recommended for further investigation.

9.
Molecules ; 24(14)2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31330957

RESUMO

Massive blood loss is responsible for numerous causes of death. Hemorrhage may occur on the battlefield, at home or during surgery. Commercially available biomaterials may be insufficient to deal with excessive bleeding. Therefore novel, highly efficient hemostatic agents must be developed. The aim of the following research was to obtain a new type of biocompatible chitosan-based hemostatic agents with increased hemostatic properties. The biomaterials were obtained in a quick and efficient manner under microwave radiation using l-aspartic and l-glutamic acid as crosslinking agents with no use of acetic acid. Ready products were investigated over their chemical structure by FT-IR method which confirmed a crosslinking process through the formation of amide bonds. Their high porosity above 90% and low density (below 0.08 g/cm3) were confirmed. The aerogels were also studied over their water vapor permeability and antioxidant activity. Prepared biomaterials were biodegradable in the presence of human lysozyme. All of the samples had excellent hemostatic properties in contact with human blood due to the platelet activation confirmed by blood clotting tests. The SEM microphotographs showed the adherence of blood cells to the biomaterials' surface. Moreover, they were biocompatible with human dermal fibroblasts (HDFs). The biomaterials also had superior antibacterial properties against both Staphylococcus aureus and Escherichia coli. The obtained results showed that proposed chitosan-based hemostatic agents have great potential as a hemostatic product and may be applied under sterile, as well as contaminated conditions, by both medicals and individuals.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Quitosana/química , Hemostáticos/química , Hemostáticos/farmacologia , Antibacterianos/síntese química , Antioxidantes/síntese química , Antioxidantes/química , Antioxidantes/farmacologia , Bactérias/efeitos dos fármacos , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Técnicas de Química Sintética , Hemostáticos/síntese química , Teste de Materiais , Testes de Sensibilidade Microbiana , Estrutura Molecular , Porosidade , Análise Espectral , Relação Estrutura-Atividade
10.
J Biomed Mater Res A ; 106(8): 2200-2212, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29637696

RESUMO

Nanofibrous materials present unique properties favorable in many biomedicine and industrial applications. In this research we evaluated biodegradation, tissue response and general toxicity of nanofibrous poly(lactic acid) (PLA) and polycaprolactone (PCL) scaffolds produced by conventional method of electrospinning and using NanoMatrix3D® (NM3D® ) technology. Mass density, scanning electron microscopy and in vitro degradation (static and dynamic) were used for material characterization, and subcutaneous, intramuscular and intraperitoneal implantation - for in vivo tests. Biochemical blood analysis and histology were used to assess toxicity and tissue response. Pore size and fiber diameter did not differ in conventional and NM3D® PLA and PCL materials, but mass density was significantly lower in NM3D® ones. Scaffolds made by conventional method showed toxic effect during the in-vivo tests due to residual concentration of chloroform that released with material degradation. NM3D® method allowed cleaning scaffolds from residual solutions that made them nontoxic and biocompatible. Subcutaneous, intramuscular and intraperitoneal implantation of PCL and PLA NM3D® electrospun nanofibrous scaffolds showed their appropriate cell conductive properties, tissue and vessels formation in all sites. Thus, NM3D® PCL and PLA nanofibrous electrospun scaffolds can be used in the field of tissue engineering, surgery, wound healing, drug delivery, and so forth, due to their unique properties, nontoxicity and biocompatibility. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2200-2212, 2018.


Assuntos
Nanofibras/toxicidade , Nanopartículas/toxicidade , Poliésteres/toxicidade , Alicerces Teciduais/química , Animais , Masculino , Especificidade de Órgãos/efeitos dos fármacos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...