Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Food Microbiol ; 418: 110728, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38696987

RESUMO

Most of the research on the characterization of Fusarium species focused on wheat, barley, rice, and maize in China. However, there has been limited research in highland barley (qingke). Recently, Fusarium head blight (FHB) of qingke was recently observed in Tibet, China, especially around the Brahmaputra River. To gain a better understanding of the pathogens involver, 201 Fusarium isolates were obtained from qingke samples in 2020. Among these isolates, the most abundant species was F. avenaceum (45.3 %), followed by F. equiseti (27.8 %), F. verticillioides (13.9 %), F. acuminatum (9.0 %), F. flocciferum (3.5 %), and F. proliferatum (0.5 %). The distribution of Fusarium species varied along the Brahmaputra River, with F. avenaceum being predominant in the midstream and downstream regions, while F. equiseti was more common in the upstream region. Chemical analyses of all the isolates revealed the production of different mycotoxins by various Fusarium species. It was found that enniatins were produced by F. acuminatum, F. avenaceum, and F. flocciferum, beauvericin (BEA) and fumonisins were produced F. proliferatum and F. verticillioides, and zearalenone (ZEN) and nivalenol (NIV) were produced by F. equiseti. Pathogenicity test showed that F. avenaceum was more aggressive in causing FHB compared to F. acuminatum, F. equiseti, and F. flocciferum. The disease severity, measured by the area under the disease progress curve (AUDPC), was significantly positively (P < 0.01) correlated with the concentration of total toxins produced by each species. Furthermore, all the Fusarium strains which were used for pathogenicity test were susceptible to carbendazim, and the 50 % effective concentration (EC50) ranged from 0.406 µg/mL to 0.673 µg/mL with an average EC50 of 0.551 ± 0.012 µg/mL.


Assuntos
Fusarium , Hordeum , Micotoxinas , Doenças das Plantas , Fusarium/classificação , Fusarium/isolamento & purificação , Fusarium/genética , Fusarium/patogenicidade , Hordeum/microbiologia , Tibet , Doenças das Plantas/microbiologia , Micotoxinas/metabolismo
2.
Animals (Basel) ; 10(2)2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31978949

RESUMO

Environmental adaptation of ruminants was highly related to microbiota in the rumen. To investigate the diversity and composition of bacteria, fungi, and protozoa in the rumen of high-altitude animals, amplicon gene sequencing was performed using rumen fluid samples derived from both Tibetan goats and sheep at the same pasture in a highland (altitude > 4800 m). Between these two species, the ruminal bacteria and fungi were significantly different at multiple taxonomic levels. The alpha diversity of bacteria was significantly high in goats (p < 0.05). One hundred and sixty-four and 29 Operational Taxonomy Units (OTUs) with significant differences were detected in bacteria and fungi, respectively. The abundance of bacteria, fungi, and protozoa in the rumen was characterized at multiple taxonomic levels, and we determined that Firmicutes, Bacteroidetes, Neocallimastigomycota, and Ciliophora were the most abundant bacteria, fungi, and protozoa. The family Neocallimastigaceae and the genus Metadinium had cellulose degradation capacity in the rumen with high abundance, thereby, suggesting that fungi and protozoa played an essential role in rumen fermentation. In addition, by comparing microbiota in the rumen of goats and sheep it was found, that the fiber-degrading fungi genus (Cyllamyces) was increased in the rumen of sheep (p < 0.05) whereas VFA-producing bacteria (Saccharofermentans and Lachnospiraceae_XPB1014) were increased in the rumen of goats (p < 0.05). Interestingly, in the rumen, no differences in protozoa were observed between goats and sheep (p > 0.05). Furthermore, when compared to sheep, level of acetic acid, propionic acid, and total volatile fatty acid (TVFA) were significantly increased in the rumen of goats (p < 0.05). Taken together, these results suggested microbiota in the rumen drive goats to better adapt to high-altitude grazing conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...