Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer ; 20(1): 111, 2021 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-34454516

RESUMO

BACKGROUND: Synthetic lethality describes a genetic interaction between two perturbations, leading to cell death, whereas neither event alone has a significant effect on cell viability. This concept can be exploited to specifically target tumor cells. CRISPR viability screens have been widely employed to identify cancer vulnerabilities. However, an approach to systematically infer genetic interactions from viability screens is missing. METHODS: Here we describe PAn-canceR Inferred Synthetic lethalities (PARIS), a machine learning approach to identify cancer vulnerabilities. PARIS predicts synthetic lethal (SL) interactions by combining CRISPR viability screens with genomics and transcriptomics data across hundreds of cancer cell lines profiled within the Cancer Dependency Map. RESULTS: Using PARIS, we predicted 15 high confidence SL interactions within 549 DNA damage repair (DDR) genes. We show experimental validation of an SL interaction between the tumor suppressor CDKN2A, thymidine phosphorylase (TYMP) and the thymidylate synthase (TYMS), which may allow stratifying patients for treatment with TYMS inhibitors. Using genome-wide mapping of SL interactions for DDR genes, we unraveled a dependency between the aldehyde dehydrogenase ALDH2 and the BRCA-interacting protein BRIP1. Our results suggest BRIP1 as a potential therapeutic target in ~ 30% of all tumors, which express low levels of ALDH2. CONCLUSIONS: PARIS is an unbiased, scalable and easy to adapt platform to identify SL interactions that should aid in improving cancer therapy with increased availability of cancer genomics data.


Assuntos
Biologia Computacional/métodos , Aprendizado de Máquina , Modelos Biológicos , Neoplasias/etiologia , Mutações Sintéticas Letais , Linhagem Celular Tumoral , Suscetibilidade a Doenças , Perfilação da Expressão Gênica/métodos , Predisposição Genética para Doença , Genômica/métodos , Humanos , Neoplasias/metabolismo
3.
Nat Microbiol ; 5(11): 1390-1402, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32747796

RESUMO

Obligate intracellular bacteria such as Chlamydia trachomatis undergo a complex developmental cycle between infectious, non-replicative elementary-body and non-infectious, replicative reticulate-body forms. Elementary bodies transform to reticulate bodies shortly after entering a host cell, a crucial process in infection, initiating chlamydial replication. As Chlamydia fail to replicate outside the host cell, it is unknown how the replicative part of the developmental cycle is initiated. Here we show, using a cell-free approach in axenic media, that the uptake of glutamine by the bacteria is crucial for peptidoglycan synthesis, which has a role in Chlamydia replication. The increased requirement for glutamine in infected cells is satisfied by reprogramming the glutamine metabolism in a c-Myc-dependent manner. Glutamine is effectively taken up by the glutamine transporter SLC1A5 and metabolized via glutaminase. Interference with this metabolic reprogramming limits the growth of Chlamydia. Intriguingly, Chlamydia failed to produce progeny in SLC1A5-knockout organoids and mice. Thus, we report on the central role of glutamine for the development of an obligate intracellular pathogenic bacterium and the reprogramming of host glutamine metabolism, which may provide a basis for innovative anti-infection strategies.


Assuntos
Infecções por Chlamydia/metabolismo , Chlamydia trachomatis/fisiologia , Glutamina/metabolismo , Peptidoglicano/biossíntese , Sistema ASC de Transporte de Aminoácidos/genética , Sistema ASC de Transporte de Aminoácidos/metabolismo , Animais , Linhagem Celular , Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/crescimento & desenvolvimento , Chlamydia trachomatis/metabolismo , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais
4.
Oncotarget ; 11(48): 4490-4503, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33400734

RESUMO

Tumor cells typically enhance their metabolic capacity to sustain their higher rate of growth and proliferation. One way to elevate the nutrient intake into cancer cells is to increase the expression of genes encoding amino acid transporters, which may represent targetable vulnerabilities. Here, we study the regulation and function of the broad amino acid transporter SLC6A14 in combination with metabolic stress, providing insights into an uncharacterized aspect of the transporter activity. We analyze the pattern of transcriptional changes in a panel of breast cancer cell lines upon metabolic stress and found that SLC6A14 expression levels are increased in the absence of methionine. Methionine deprivation, which can be achieved via modulation of dietary methionine intake in tumor cells, in turn leads to a heightened activation of the AMP-activated kinase (AMPK) in SLC6A14-deficient cells. While SLC6A14 genetic deficiency does not have a major impact on cell proliferation, combined depletion of AMPK and SLC6A14 leads to an increase in apoptosis upon methionine starvation, suggesting that combined targeting of SLC6A14 and AMPK can be exploited as a therapeutic approach to starve tumor cells.

5.
Commun Biol ; 1: 210, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30511023

RESUMO

Cytotoxic activities of several Golgi-dispersing compounds including AMF-26/M-COPA, brefeldin A and golgicide A have previously been shown to induce autophagy or apoptosis. Here, we demonstrate that these Golgi disruptors also trigger ferroptosis, a non-apoptotic form of cell death characterized by iron-dependent oxidative degradation of lipids. Inhibitors of ferroptosis not only counteract cell death, but they also protect from Golgi dispersal and inhibition of protein secretion in response to several Golgi stress agents. Furthermore, the application of sublethal doses of ferroptosis-inducers such as erastin and sorafenib, low cystine growth conditions, or genetic knockdown of SLC7A11 and GPX4 all similarly protect cells from Golgi stress and lead to modulation of ACSL4, SLC7A5, SLC7A11 or GPX4 levels. Collectively, this study suggests a previously unrecognized function of the Golgi apparatus, which involves cellular redox control and prevents ferroptotic cell death.

6.
EMBO J ; 36(23): 3409-3420, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29127156

RESUMO

Transcription factors of the MYC family are deregulated in the majority of all human cancers. Oncogenic levels of MYC reprogram cellular metabolism, a hallmark of cancer development, to sustain the high rate of proliferation of cancer cells. Conversely, cells need to modulate MYC function according to the availability of nutrients, in order to avoid a metabolic collapse. Here, we review recent evidence that the multiple interactions of MYC with cell metabolism are mutual and review mechanisms that control MYC levels and function in response to metabolic stress situations. The main hypothesis we put forward is that regulation of MYC levels is an integral part of the adaptation of cells to nutrient deprivation. Since such mechanisms would be particularly relevant in tumor cells, we propose that-in contrast to growth factor-dependent controls-they are not disrupted during tumorigenesis and that maintaining flexibility of expression is integral to MYC's oncogenic function.


Assuntos
Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Apoptose , Poliaminas Biogênicas/biossíntese , Proteína Forkhead Box O1/metabolismo , Genes myc , Glucose/metabolismo , Glutamina/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Redes e Vias Metabólicas , Neoplasias/genética , Neoplasias/patologia , Nucleotídeos/biossíntese , Proteínas Proto-Oncogênicas c-myc/genética , Estresse Fisiológico
7.
EMBO J ; 36(13): 1854-1868, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28408437

RESUMO

Deregulated expression of MYC enhances glutamine utilization and renders cell survival dependent on glutamine, inducing "glutamine addiction". Surprisingly, colon cancer cells that express high levels of MYC due to WNT pathway mutations are not glutamine-addicted but undergo a reversible cell cycle arrest upon glutamine deprivation. We show here that glutamine deprivation suppresses translation of endogenous MYC via the 3'-UTR of the MYC mRNA, enabling escape from apoptosis. This regulation is mediated by glutamine-dependent changes in adenosine-nucleotide levels. Glutamine deprivation causes a global reduction in promoter association of RNA polymerase II (RNAPII) and slows transcriptional elongation. While activation of MYC restores binding of MYC and RNAPII function on most promoters, restoration of elongation is imperfect and activation of MYC in the absence of glutamine causes stalling of RNAPII on multiple genes, correlating with R-loop formation. Stalling of RNAPII and R-loop formation can cause DNA damage, arguing that the MYC 3'-UTR is critical for maintaining genome stability when ribonucleotide levels are low.


Assuntos
Regiões 3' não Traduzidas , Regulação Enzimológica da Expressão Gênica , Glutamina/metabolismo , Proteínas Proto-Oncogênicas c-myc/biossíntese , RNA Polimerase II/metabolismo , RNA Mensageiro/metabolismo , Ribonucleotídeos/metabolismo , Linhagem Celular , Humanos , Proteínas Proto-Oncogênicas c-myc/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...