Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Dalton Trans ; 48(3): 1075-1083, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30601511

RESUMO

The accuracy of magnetic resonance imaging (MRI) scanning can be improved using a multifunctional nanosystem having T1-T2 dual contrast enhancement. Specifically, the combination of both T1 and T2 effects in a single system helps in acquiring cross validated information during dual mode MRI and reduces the required dose. In this study, polyethylene glycol (PEG) stabilized MnFe2O4@MnO Janus nanoparticles were developed as novel dual-mode MR imaging agents. MnO contributed to T1 contrast whereas MnFe2O4 enabled T2 contrast. The PEG molecules afforded solubility and stability to the contrast agent in water, making it acceptable for biomedical purposes. The biocompatibility of the developed nanosystem was confirmed by cell viability studies. The r2/r1 ratio remained at a suitable value, justifying the applicability of the contrast agent for dual mode MRI. Finally, the efficiency of the agent for T1-T2 contrast enhancement was confirmed through in vitro and ex vivo MRI experiments.

2.
ACS Appl Mater Interfaces ; 9(4): 4126-4141, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28098453

RESUMO

In this paper, we report the synthesis of surface-engineered multifunctional Eu:Gd2O3 triangular nanoplates with small size and uniform shape via a high-temperature solvothermal technique. Surface engineering has been performed by a one-step polyacrylate coating, followed by controlled conjugation chemistry. This creates the desired number of surface functional groups that can be used to attach folic acid as a targeting ligand on the nanoparticle surface. To specifically deliver the drug molecules in the nucleus, the folate density on the nanoparticle surface has been kept low. We have also modified the drug molecules with terminal double bond and ester linkage for the easy conjugation of nanoparticles. The nanoparticle surface was further modified with free thiols to specifically attach the modified drug molecules with a pH-responsive feature. High drug loading has been encountered for both hydrophilic drug daunorubicin (∼69% loading) and hydrophobic drug curcumin (∼75% loading) with excellent pH-responsive drug release. These nanoparticles have also been used as imaging probes in fluorescence imaging. Some preliminary experiments to evaluate their application in magnetic resonance imaging have also been explored. A detailed fluorescence imaging study has confirmed the efficient delivery of drugs to the nuclei of cancer cells with a high cytotoxic effect. Synthesized surface-engineered nanomaterials having small hydrodynamic size, excellent colloidal stability, and high drug-loading capacity, along with targeted and pH-responsive delivery of dual drugs to the cancer cells, will be potential nanobiomaterials for various biomedical applications.


Assuntos
Gadolínio/química , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Ácido Fólico , Concentração de Íons de Hidrogênio , Nanopartículas Metálicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...