Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; : e0044624, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709099

RESUMO

The marine subsurface is a long-term sink of atmospheric carbon dioxide with significant implications for climate on geologic timescales. Subsurface microbial cells can either enhance or reduce carbon sequestration in the subsurface, depending on their metabolic lifestyle. However, the activity of subsurface microbes is rarely measured. Here, we used nanoscale secondary ion mass spectrometry (nanoSIMS) to quantify anabolic activity in 3,203 individual cells from the thermally altered deep subsurface in the Guaymas Basin, Mexico (3-75 m below the seafloor, 0-14°C). We observed that a large majority of cells were active (83%-100%), although the rates of biomass generation were low, suggesting cellular maintenance rather than doubling. Mean single-cell activity decreased with increasing sediment depth and temperature and was most strongly correlated with porewater sulfate concentrations. Intracommunity heterogeneity in microbial activity decreased with increasing sediment depth and age. Using a dual-isotope labeling approach, we determined that all active cells analyzed were heterotrophic, deriving the majority of their cellular carbon from organic sources. However, we also detected inorganic carbon assimilation in these heterotrophic cells, likely via processes such as anaplerosis, and determined that inorganic carbon contributes at least 5% of the total biomass carbon in heterotrophs in this community. Our results demonstrate that the deep marine biosphere at Guaymas Basin is largely active and contributes to subsurface carbon cycling primarily by not only assimilating organic carbon but also fixing inorganic carbon. Heterotrophic assimilation of inorganic carbon may be a small yet significant and widespread underappreciated source of labile carbon in the global subsurface. IMPORTANCE: The global subsurface is the largest reservoir of microbial life on the planet yet remains poorly characterized. The activity of life in this realm has implications for long-term elemental cycling, particularly of carbon, as well as how life survives in extreme environments. Here, we recovered cells from the deep subsurface of the Guaymas Basin and investigated the level and distribution of microbial activity, the physicochemical drivers of activity, and the relative significance of organic versus inorganic carbon to subsurface biomass. Using a sensitive single-cell assay, we found that the majority of cells are active, that activity is likely driven by the availability of energy, and that although heterotrophy is the dominant metabolism, both organic and inorganic carbon are used to generate biomass. Using a new approach, we quantified inorganic carbon assimilation by heterotrophs and highlighted the importance of this often-overlooked mode of carbon assimilation in the subsurface and beyond.

2.
Nat Microbiol ; 9(3): 657-668, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38287146

RESUMO

Active hydrothermal vents are oases for productivity in the deep ocean, but the flow of dissolved substrates that fuel such abundant life ultimately ceases, leaving behind inactive mineral deposits. The rates of microbial activity on these deposits are largely unconstrained. Here we show primary production occurs on inactive hydrothermal deposits and quantify its contribution to new organic carbon production in the deep ocean. Measured incorporation of 14C-bicarbonate shows that microbial communities on inactive deposits fix inorganic carbon at rates comparable to those on actively venting deposits. Single-cell uptake experiments and nanoscale secondary ion mass spectrometry showed chemoautotrophs comprise a large fraction (>30%) of the active microbial cells. Metagenomic and lipidomic surveys of inactive deposits further revealed that the microbial communities are dominated by Alphaproteobacteria and Gammaproteobacteria using the Calvin-Benson-Bassham pathway for carbon fixation. These findings establish inactive vent deposits as important sites for microbial activity and organic carbon production on the seafloor.


Assuntos
Fontes Hidrotermais , Microbiota , Fontes Hidrotermais/microbiologia , Filogenia , Carbono/metabolismo , Oceanos e Mares
3.
Proc Natl Acad Sci U S A ; 120(51): e2302156120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38079551

RESUMO

Authigenic carbonate minerals can preserve biosignatures of microbial anaerobic oxidation of methane (AOM) in the rock record. It is not currently known whether the microorganisms that mediate sulfate-coupled AOM-often occurring as multicelled consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB)-are preserved as microfossils. Electron microscopy of ANME-SRB consortia in methane seep sediments has shown that these microorganisms can be associated with silicate minerals such as clays [Chen et al., Sci. Rep. 4, 1-9 (2014)], but the biogenicity of these phases, their geochemical composition, and their potential preservation in the rock record is poorly constrained. Long-term laboratory AOM enrichment cultures in sediment-free artificial seawater [Yu et al., Appl. Environ. Microbiol. 88, e02109-21 (2022)] resulted in precipitation of amorphous silicate particles (~200 nm) within clusters of exopolymer-rich AOM consortia from media undersaturated with respect to silica, suggestive of a microbially mediated process. The use of techniques like correlative fluorescence in situ hybridization (FISH), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS), and nanoscale secondary ion mass spectrometry (nanoSIMS) on AOM consortia from methane seep authigenic carbonates and sediments further revealed that they are enveloped in a silica-rich phase similar to the mineral phase on ANME-SRB consortia in enrichment cultures. Like in cyanobacteria [Moore et al., Geology 48, 862-866 (2020)], the Si-rich phases on ANME-SRB consortia identified here may enhance their preservation as microfossils. The morphology of these silica-rich precipitates, consistent with amorphous-type clay-like spheroids formed within organic assemblages, provides an additional mineralogical signature that may assist in the search for structural remnants of microbial consortia in rocks which formed in methane-rich environments from Earth and other planetary bodies.


Assuntos
Sedimentos Geológicos , Metano , Sedimentos Geológicos/microbiologia , Anaerobiose , Dióxido de Silício , Hibridização in Situ Fluorescente , Fósseis , Archaea/genética , Oxirredução , Sulfatos , Silicatos , Filogenia , Consórcios Microbianos
4.
Sci Adv ; 9(51): eadj3594, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38134283

RESUMO

Hypersaline brines provide excellent opportunities to study extreme microbial life. Here, we investigated anabolic activity in nearly 6000 individual cells from solar saltern sites with water activities (aw) ranging from 0.982 to 0.409 (seawater to extreme brine). Average anabolic activity decreased exponentially with aw, with nuanced trends evident at the single-cell level: The proportion of active cells remained high (>50%) even after NaCl saturation, and subsets of cells spiked in activity as aw decreased. Intracommunity heterogeneity in activity increased as seawater transitioned to brine, suggesting increased phenotypic heterogeneity with increased physiological stress. No microbial activity was detected in the 0.409-aw brine (an MgCl2-dominated site) despite the presence of cell-like structures. Extrapolating our data, we predict an aw limit for detectable anabolic activity of 0.540, which is beyond the currently accepted limit of life based on cell division. This work demonstrates the utility of single-cell, metabolism-based techniques for detecting active life and expands the potential habitable space on Earth and beyond.


Assuntos
Archaea , Água , Sais/química , Água do Mar/química , Análise de Célula Única
5.
ISME J ; 17(10): 1649-1659, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37452096

RESUMO

The preeminent source of biological methane on Earth is methyl coenzyme M reductase (Mcr)-dependent archaeal methanogenesis. A growing body of evidence suggests a diversity of archaea possess Mcr, although experimental validation of hypothesized methane metabolisms has been missing. Here, we provide evidence of a functional Mcr-based methanogenesis pathway in a novel member of the family Archaeoglobaceae, designated Methanoglobus nevadensis, which we enriched from a terrestrial hot spring on the polysaccharide xyloglucan. Our incubation assays demonstrate methane production that is highly sensitive to the Mcr inhibitor bromoethanesulfonate, stimulated by xyloglucan and xyloglucan-derived sugars, concomitant with the consumption of molecular hydrogen, and causing a deuterium fractionation in methane characteristic of hydrogenotrophic and methylotrophic methanogens. Combined with the recovery and analysis of a high-quality M. nevadensis metagenome-assembled genome encoding a divergent Mcr and diverse potential electron and carbon transfer pathways, our observations suggest methanogenesis in M. nevadensis occurs via Mcr and is fueled by the consumption of cross-fed byproducts of xyloglucan fermentation mediated by other community members. Phylogenetic analysis shows close affiliation of the M. nevadensis Mcr with those from Korarchaeota, Nezhaarchaeota, Verstraetearchaeota, and other Archaeoglobales that are divergent from well-characterized Mcr. We propose these archaea likely also use functional Mcr complexes to generate methane on the basis of our experimental validation in M. nevadensis. Thus, divergent Mcr-encoding archaea may be underestimated sources of biological methane in terrestrial and marine hydrothermal environments.


Assuntos
Archaeoglobales , Fontes Termais , Filogenia , Archaeoglobales/metabolismo , Metano/metabolismo , Archaea
6.
Environ Microbiol ; 25(3): 689-704, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36478085

RESUMO

Marine Group I (MGI) Thaumarchaeota were originally described as chemoautotrophic nitrifiers, but molecular and isotopic evidence suggests heterotrophic and/or mixotrophic capabilities. Here, we investigated the quantity and composition of organic matter assimilated by individual, uncultured MGI cells from the Pacific Ocean to constrain their potential for mixotrophy and heterotrophy. We observed that most MGI cells did not assimilate carbon from any organic substrate provided (glucose, pyruvate, oxaloacetate, protein, urea, and amino acids). The minority of MGI cells that did assimilate it did so exclusively from nitrogenous substrates (urea, 15% of MGI and amino acids, 36% of MGI), and only as an auxiliary carbon source (<20% of that subset's total cellular carbon was derived from those substrates). At the population level, MGI assimilation of organic carbon comprised just 0.5%-11% of total biomass carbon. We observed extensive assimilation of inorganic carbon and urea- and amino acid-derived nitrogen (equal to that from ammonium), consistent with metagenomic and metatranscriptomic analyses performed here and previously showing a widespread potential for MGI to perform autotrophy and transport and degrade organic nitrogen. Our results constrain the quantity and composition of organic matter used by MGI and suggest they use it primarily to meet nitrogen demands for anabolism and nitrification.


Assuntos
Archaea , Carbono , Archaea/metabolismo , Carbono/metabolismo , Aminoácidos/metabolismo , Ureia/metabolismo , Nitrogênio/metabolismo
7.
Front Microbiol ; 14: 1312843, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38249476

RESUMO

Macroalgae, commonly known as seaweed, are foundational species in coastal ecosystems and contribute significantly to coastal primary production globally. However, the impact of macroalgal decomposition on benthic biological nitrogen fixation (BNF) after deposition to the seafloor remains largely unexplored. In this study, we measure BNF rates at three different sites at the Big Fisherman's Cove on Santa Catalina Island, CA, USA, which is representative of globally distributed rocky bottom macroalgal habitats. Unamended BNF rates varied among sites (0.001-0.05 nmol N g-1 h -1) and were generally within the lower end of previously reported ranges. We hypothesized that the differences in BNF between sites were linked to the availability of organic matter. Indeed, additions of glucose, a labile carbon source, resulted in 2-3 orders of magnitude stimulation of BNF rates in bottle incubations of sediment from all sites. To assess the impact of complex, autochthonous organic matter, we simulated macroalgal deposition and remineralization with additions of brown (i.e., Macrocystis pyrifera and Dictyopteris), green (i.e., Codium fragile), and red (i.e., Asparagopsis taxiformis) macroalgae. While brown and green macroalgal amendments resulted in 53- to 520-fold stimulation of BNF rates-comparable to the labile carbon addition-red alga was found to significantly inhibit BNF rates. Finally, we employed nifH sequencing to characterize the diazotrophic community associated with macroalgal decomposition. We observed a distinct community shift in potential diazotrophs from primarily Gammaproteobacteria in the early stages of remineralization to a community dominated by Deltaproteobacteria (e.g., sulfate reducers), Bacteroidia, and Spirochaeta toward the latter phase of decomposition of brown, green, and red macroalgae. Notably, the nifH-containing community associated with red macroalgal detritus was distinct from that of brown and green macroalgae. Our study suggests coastal benthic diazotrophs are limited by organic carbon and demonstrates a significant and phylum-specific effect of macroalgal loading on benthic microbial communities.

8.
Environ Microbiol ; 24(11): 5188-5201, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36054699

RESUMO

Sediment microorganisms influence global climate and redox by altering rates of organic carbon burial. However, the activity and ecology of benthic microorganisms are poorly characterized, especially in the deep sea. Here, we conducted nearly 300 stable isotope tracer experiments in sediments from the Pacific and Atlantic oceans (100-4500 m water depth) to determine the rates, spatial distribution, and physicochemical controls on microbial total anabolic activity, nitrogen fixation, and inorganic/organic carbon uptake. Using correlative and manipulative approaches, we find that total activity is limited primarily by organic carbon and/or energy. Activity correlates significantly with distance from shore, sediment depth, C:N ratios, and overlying chlorophyll concentrations and is stimulated by carbon but not nitrogen additions. Consistent with this, nitrogen fixation was undetected despite relatively low concentrations of porewater ammonium and the previous detection of nifH genes. Inorganic carbon uptake accounted for 7%-55% of carbon assimilation per sample (median 21%), suggesting chemoautotrophy is an important and unappreciated source of labile carbon in deep-sea sediments. Community 16S rRNA was dominated by Bacteria (<2% Archaea), primarily Desulfobacterales of the Deltaproteobacteria. Leveraging our findings, we modelled global benthic microbial activity through geologic time and find the potential for significant shifts in total activity with supercontinental cycles.


Assuntos
Archaea , Sedimentos Geológicos , RNA Ribossômico 16S/genética , Sedimentos Geológicos/microbiologia , Archaea/genética , Bactérias/genética , Carbono , Filogenia
9.
Nat Commun ; 13(1): 3773, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35773279

RESUMO

Trace metals have been an important ingredient for life throughout Earth's history. Here, we describe the genome-guided cultivation of a member of the elusive archaeal lineage Caldarchaeales (syn. Aigarchaeota), Wolframiiraptor gerlachensis, and its growth dependence on tungsten. A metagenome-assembled genome (MAG) of W. gerlachensis encodes putative tungsten membrane transport systems, as well as pathways for anaerobic oxidation of sugars probably mediated by tungsten-dependent ferredoxin oxidoreductases that are expressed during growth. Catalyzed reporter deposition-fluorescence in-situ hybridization (CARD-FISH) and nanoscale secondary ion mass spectrometry (nanoSIMS) show that W. gerlachensis preferentially assimilates xylose. Phylogenetic analyses of 78 high-quality Wolframiiraptoraceae MAGs from terrestrial and marine hydrothermal systems suggest that tungsten-associated enzymes were present in the last common ancestor of extant Wolframiiraptoraceae. Our observations imply a crucial role for tungsten-dependent metabolism in the origin and evolution of this lineage, and hint at a relic metabolic dependence on this trace metal in early anaerobic thermophiles.


Assuntos
Archaea , Tungstênio , Anaerobiose , Archaea/metabolismo , Metagenoma , Filogenia
10.
Proc Natl Acad Sci U S A ; 119(25): e2113985119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35696589

RESUMO

Subsurface environments host diverse microorganisms in fluid-filled fractures; however, little is known about how geological and hydrological processes shape the subterranean biosphere. Here, we sampled three flowing boreholes weekly for 10 mo in a 1478-m-deep fractured rock aquifer to study the role of fracture activity (defined as seismically or aseismically induced fracture aperture change) and advection on fluid-associated microbial community composition. We found that despite a largely stable deep-subsurface fluid microbiome, drastic community-level shifts occurred after events signifying physical changes in the permeable fracture network. The community-level shifts include the emergence of microbial families from undetected to over 50% relative abundance, as well as the replacement of the community in one borehole by the earlier community from a different borehole. Null-model analysis indicates that the observed spatial and temporal community turnover was primarily driven by stochastic processes (as opposed to deterministic processes). We, therefore, conclude that the observed community-level shifts resulted from the physical transport of distinct microbial communities from other fracture(s) that outpaced environmental selection. Given that geological activity is a major cause of fracture activity and that geological activity is ubiquitous across space and time on Earth, our findings suggest that advection induced by geological activity is a general mechanism shaping the microbial biogeography and diversity in deep-subsurface habitats across the globe.


Assuntos
Efeitos Antropogênicos , Bactérias , Água Subterrânea , Microbiota , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Geologia , Água Subterrânea/microbiologia , Hidrologia
11.
Appl Environ Microbiol ; 88(11): e0046822, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35607968

RESUMO

Marine cold seeps are natural sites of methane emission and harbor distinct microbial communities capable of oxidizing methane. The majority of known cold seeps are on tectonically active continental margins, but recent discoveries have revealed abundant seeps on passive margins as well, including on the U.S. Atlantic Margin (USAM). We sampled in and around four USAM seeps and combined pore water geochemistry measurements with amplicon sequencing of 16S rRNA and mcrA (DNA and RNA) to investigate the microbial communities present, their assembly processes, and how they compare to communities at previously studied sites. We found that the USAM seeps contained communities consistent with the canonical seep microbiome at the class and order levels but differed markedly at the sequence variant level, especially within the anaerobic methanotrophic (ANME) archaea. The ANME populations were highly uneven, with just a few dominant mcrA sequence variants at each seep. Interestingly, the USAM seeps did not form a distinct phylogenetic cluster when compared with other previously described seeps around the world. Consistent with this, we found only a very weak (though statistically significant) distance-decay trend in seep community similarity across a global data set. Ecological assembly indices suggest that the USAM seep communities were assembled primarily deterministically, in contrast to the surrounding nonseep sediments, where stochastic processes dominated. Together, our results suggest that the primary driver of seep microbial community composition is local geochemistry-specifically methane, sulfide, nitrate, acetate, and ammonium concentrations-rather than the geologic context, the composition of nearby seeps, or random events of dispersal. IMPORTANCE Cold seeps are now known to be widespread features of passive continental margins, including the northern U.S. Atlantic Margin (USAM). Methane seepage is expected to intensify at these relatively shallow seeps as bottom waters warm and underlying methane hydrates dissociate. While methanotrophic microbial communities might reduce or prevent methane release, microbial communities on passive margins have rarely been characterized. In this study, we investigated the Bacteria and Archaea at four cold seeps on the northern USAM and found that despite being colocated on the same continental slope, the communities significantly differ by site at the sequence variant level, particularly methane-cycling community members. Differentiation by site was not observed in similarly spaced background sediments, raising interesting questions about the dispersal pathways of cold seep microorganisms. Understanding the genetic makeup of these discrete seafloor ecosystems and how their microbial communities develop will be increasingly important as the climate changes.


Assuntos
Archaea , Microbiota , Archaea/metabolismo , Sedimentos Geológicos/microbiologia , Metano/metabolismo , Methanosarcinales/genética , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Água do Mar/microbiologia
12.
mSystems ; : e0075821, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34463583

RESUMO

Metagenomic sequencing of environmental samples has dramatically expanded our knowledge of microbial taxonomic and metabolic diversity and suggests metabolic interdependence is widespread. However, translating these insights into knowledge of ecosystem function and, therefore, implications for local and global chemistry, remains a challenge. In this commentary, I argue that making direct measurements of microbial activity in situ is an essential step to confirm gene-based hypotheses of microbial physiology and bridge advances in microbial ecology with a predicative understanding of global chemistry and climate. Making these measurements across a range of spatial scales and experimentally manipulated conditions contributes to a process-based understanding and, therefore, more robust predictions of how activity will respond to changing environmental conditions. I discuss recent advancements in quantifying microbial activity in situ and highlight several lines of research in marine microbiology that leverage complementary genomic and isotopic methods to connect microbes and global chemistry.

13.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34074785

RESUMO

Microbial interactions in aquatic environments profoundly affect global biogeochemical cycles, but the role of microparasites has been largely overlooked. Using a model pathosystem, we studied hitherto cryptic interactions between microparasitic fungi (chytrid Rhizophydiales), their diatom host Asterionella, and cell-associated and free-living bacteria. We analyzed the effect of fungal infections on microbial abundances, bacterial taxonomy, cell-to-cell carbon transfer, and cell-specific nitrate-based growth using microscopy (e.g., fluorescence in situ hybridization), 16S rRNA gene amplicon sequencing, and secondary ion mass spectrometry. Bacterial abundances were 2 to 4 times higher on individual fungal-infected diatoms compared to healthy diatoms, particularly involving Burkholderiales. Furthermore, taxonomic compositions of both diatom-associated and free-living bacteria were significantly different between noninfected and fungal-infected cocultures. The fungal microparasite, including diatom-associated sporangia and free-swimming zoospores, derived ∼100% of their carbon content from the diatom. By comparison, transfer efficiencies of photosynthetic carbon were lower to diatom-associated bacteria (67 to 98%), with a high cell-to-cell variability, and even lower to free-living bacteria (32%). Likewise, nitrate-based growth for the diatom and fungi was synchronized and faster than for diatom-associated and free-living bacteria. In a natural lacustrine system, where infection prevalence reached 54%, we calculated that 20% of the total diatom-derived photosynthetic carbon was shunted to the parasitic fungi, which can be grazed by zooplankton, thereby accelerating carbon transfer to higher trophic levels and bypassing the microbial loop. The herein termed "fungal shunt" can thus significantly modify the fate of photosynthetic carbon and the nature of phytoplankton-bacteria interactions, with implications for diverse pelagic food webs and global biogeochemical cycles.


Assuntos
Carbono/metabolismo , Quitridiomicetos/fisiologia , Diatomáceas , Cadeia Alimentar , Consórcios Microbianos , Fitoplâncton , Burkholderiales/metabolismo , Diatomáceas/metabolismo , Diatomáceas/parasitologia , Fitoplâncton/metabolismo , Fitoplâncton/parasitologia
14.
Environ Microbiol ; 23(7): 3825-3839, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33621409

RESUMO

Concurrent osmotic and chaotropic stress make MgCl2 -rich brines extremely inhospitable environments. Understanding the limits of life in these brines is essential to the search for extraterrestrial life on contemporary and relict ocean worlds, like Mars, which could host similar environments. We sequenced environmental 16S rRNA genes and quantified microbial activity across a broad range of salinity and chaotropicity at a Mars-analogue salt harvesting facility in Southern California, where seawater is evaporated in a series of ponds ranging from kosmotropic NaCl brines to highly chaotropic MgCl2 brines. Within NaCl brines, we observed a proliferation of specialized halophilic Euryarchaeota, which corresponded closely with the dominant taxa found in salterns around the world. These communities were characterized by very slow growth rates and high biomass accumulation. As salinity and chaotropicity increased, we found that the MgCl2 -rich brines eventually exceeded the limits of microbial activity. We found evidence that exogenous genetic material is preserved in these chaotropic brines, producing an unexpected increase in diversity in the presumably sterile MgCl2 -saturated brines. Because of their high potential for biomarker preservation, chaotropic brines could therefore serve as repositories of genetic biomarkers from nearby environments (both on Earth and beyond) making them prime targets for future life-detection missions.


Assuntos
Salinidade , Água do Mar , Oceanos e Mares , RNA Ribossômico 16S/genética , Cloreto de Sódio/análise
15.
Bioinformatics ; 37(16): 2289-2298, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-33580675

RESUMO

MOTIVATION: Linking microbial community members to their ecological functions is a central goal of environmental microbiology. When assigned taxonomy, amplicon sequences of metabolic marker genes can suggest such links, thereby offering an overview of the phylogenetic structure underpinning particular ecosystem functions. However, inferring microbial taxonomy from metabolic marker gene sequences remains a challenge, particularly for the frequently sequenced nitrogen fixation marker gene, nitrogenase reductase (nifH). Horizontal gene transfer in recent nifH evolutionary history can confound taxonomic inferences drawn from the pairwise identity methods used in existing software. Other methods for inferring taxonomy are not standardized and require manual inspection that is difficult to scale. RESULTS: We present Phylogenetic Placement for Inferring Taxonomy (PPIT), an R package that infers microbial taxonomy from nifH amplicons using both phylogenetic and sequence identity approaches. After users place query sequences on a reference nifH gene tree provided by PPIT (n = 6317 full-length nifH sequences), PPIT searches the phylogenetic neighborhood of each query sequence and attempts to infer microbial taxonomy. An inference is drawn only if references in the phylogenetic neighborhood are: (1) taxonomically consistent and (2) share sufficient pairwise identity with the query, thereby avoiding erroneous inferences due to known horizontal gene transfer events. We find that PPIT returns a higher proportion of correct taxonomic inferences than BLAST-based approaches at the cost of fewer total inferences. We demonstrate PPIT on deep-sea sediment and find that Deltaproteobacteria are the most abundant potential diazotrophs. Using this dataset, we show that emending PPIT inferences based on visual inspection of query sequence placement can achieve taxonomic inferences for nearly all sequences in a query set. We additionally discuss how users can apply PPIT to the analysis of other marker genes. AVAILABILITY AND IMPLEMENTATION: PPIT is freely available to noncommercial users at https://github.com/bkapili/ppit. Installation includes a vignette that demonstrates package use and reproduces the nifH amplicon analysis discussed here. The raw nifH amplicon sequence data have been deposited in the GenBank, EMBL and DDBJ databases under BioProject number PRJEB37167. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

16.
Environ Microbiol ; 23(1): 81-98, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33000528

RESUMO

The activity of individual microorganisms can be measured within environmental samples by detecting uptake of isotope-labelled substrates using nano-scale secondary ion mass spectrometry (nanoSIMS). Recent studies have demonstrated that sample preparation can decrease 13 C and 15 N enrichment in bacterial cells, resulting in underestimates of activity. Here, we explore this effect with a variety of preparation types, microbial lineages and isotope labels to determine its consistency and therefore potential for correction. Specifically, we investigated the impact of different protocols for fixation, nucleic acid staining and catalysed reporter deposition fluorescence in situ hybridization (CARD-FISH) on >14 500 archaeal and bacterial cells (Methanosarcina acetivorans, Sulfolobus acidocaldarius and Pseudomonas putida) enriched in 13 C, 15 N, 18 O, 2 H and/or 34 S. We found these methods decrease isotope enrichments by up to 80% - much more than previously reported - and that the effect varies by taxa, growth phase, isotope label and applied protocol. We make recommendations for how to account for this effect experimentally and analytically. We also re-evaluate published nanoSIMS datasets and revise estimated microbial turnover times in the marine subsurface and nitrogen fixation rates in pelagic unicellular cyanobacteria. When sample preparation is accounted for, cell-specific rates increase and are more consistent with modelled and bulk rates.


Assuntos
Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Isótopos/análise , Espectrometria de Massa de Íon Secundário/métodos , Archaea/classificação , Archaea/genética , Archaea/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Isótopos de Carbono/análise , Isótopos de Carbono/metabolismo , Hibridização in Situ Fluorescente , Marcação por Isótopo/métodos , Isótopos/metabolismo , Isótopos de Nitrogênio/análise , Isótopos de Nitrogênio/metabolismo
17.
ISME J ; 14(4): 971-983, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31907368

RESUMO

Diazotrophic microorganisms regulate marine productivity by alleviating nitrogen limitation. However, we know little about the identity and activity of diazotrophs in deep-sea sediments, a habitat covering nearly two-thirds of the planet. Here, we identify candidate diazotrophs from Pacific Ocean sediments collected at 2893 m water depth using 15N-DNA stable isotope probing and a novel pipeline for nifH sequence analysis. Together, these approaches detect an unexpectedly diverse assemblage of active diazotrophs, including members of the Acidobacteria, Firmicutes, Nitrospirae, Gammaproteobacteria, and Deltaproteobacteria. Deltaproteobacteria, predominately members of the Desulfobacterales and Desulfuromonadales, are the most abundant diazotrophs detected, and display the most microdiversity of associated nifH sequences. Some of the detected lineages, including those within the Acidobacteria, have not previously been shown to fix nitrogen. The diazotrophs appear catabolically diverse, with the potential for using oxygen, nitrogen, iron, sulfur, and carbon as terminal electron acceptors. Therefore, benthic diazotrophy may persist throughout a range of geochemical conditions and provide a stable source of fixed nitrogen over geologic timescales. Our results suggest that nitrogen-fixing communities in deep-sea sediments are phylogenetically and catabolically diverse, and open a new line of inquiry into the ecology and biogeochemical impacts of deep-sea microorganisms.


Assuntos
Sedimentos Geológicos/microbiologia , Bactérias/genética , Carbono , Ecossistema , Nitrogênio , Fixação de Nitrogênio/genética , Oceano Pacífico , Filogenia , Enxofre
18.
Front Microbiol ; 10: 2682, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31920997

RESUMO

Characterizing and quantifying in situ metabolisms remains both a central goal and challenge for environmental microbiology. Here, we used a single-cell, multi-isotope approach to investigate the anabolic activity of marine microorganisms, with an emphasis on natural populations of Thaumarchaeota. After incubating coastal Pacific Ocean water with 13C-bicarbonate and 15N-amino acids, we used nanoscale secondary ion mass spectrometry (nanoSIMS) to isotopically screen 1,501 individual cells, and 16S rRNA amplicon sequencing to assess community composition. We established isotopic enrichment thresholds for activity and metabolic classification, and with these determined the percentage of anabolically active cells, the distribution of activity across the whole community, and the metabolic lifestyle-chemoautotrophic or heterotrophic-of each cell. Most cells (>90%) were anabolically active during the incubation, and 4-17% were chemoautotrophic. When we inhibited bacteria with antibiotics, the fraction of chemoautotrophic cells detected via nanoSIMS increased, suggesting archaea dominated chemoautotrophy. With fluorescence in situ hybridization coupled to nanoSIMS (FISH-nanoSIMS), we confirmed that most Thaumarchaeota were living chemoautotrophically, while bacteria were not. FISH-nanoSIMS analysis of cells incubated with dual-labeled (13C,15N-) amino acids revealed that most Thaumarchaeota cells assimilated amino-acid-derived nitrogen but not carbon, while bacteria assimilated both. This indicates that some Thaumarchaeota do not assimilate intact amino acids, suggesting intra-phylum heterogeneity in organic carbon utilization, and potentially their use of amino acids for nitrification. Together, our results demonstrate the utility of multi-isotope nanoSIMS analysis for high-throughput metabolic screening, and shed light on the activity and metabolism of uncultured marine archaea and bacteria.

19.
Nat Biotechnol ; 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30320765

RESUMO

Although shotgun metagenomic sequencing of microbiome samples enables partial reconstruction of strain-level community structure, obtaining high-quality microbial genome drafts without isolation and culture remains difficult. Here, we present an application of read clouds, short-read sequences tagged with long-range information, to microbiome samples. We present Athena, a de novo assembler that uses read clouds to improve metagenomic assemblies. We applied this approach to sequence stool samples from two healthy individuals and compared it with existing short-read and synthetic long-read metagenomic sequencing techniques. Read-cloud metagenomic sequencing and Athena assembly produced the most comprehensive individual genome drafts with high contiguity (>200-kb N50, fewer than ten contigs), even for bacteria with relatively low (20×) raw short-read-sequence coverage. We also sequenced a complex marine-sediment sample and generated 24 intermediate-quality genome drafts (>70% complete, <10% contaminated), nine of which were complete (>90% complete, <5% contaminated). Our approach allows for culture-free generation of high-quality microbial genome drafts by using a single shotgun experiment.

20.
Environ Microbiol ; 20(12): 4281-4296, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29968367

RESUMO

Nitrogen fixation, the biological conversion of N2 to NH3 , is critical to alleviating nitrogen limitation in many marine ecosystems. To date, few measurements exist of N2 fixation in deep-sea sediments. Here, we conducted > 400 bottle incubations with sediments from methane seeps, whale falls and background sites off the western coast of the United States from 600 to 2893 m water depth to investigate the potential rates, spatial distribution and biological mediators of benthic N2 fixation. We found that N2 fixation was widespread, yet heterogeneously distributed with sediment depth at all sites. In some locations, rates exceeded previous measurements by > 10×, and provided up to 30% of the community anabolic growth requirement for nitrogen. Diazotrophic activity appeared to be inhibited by pore water ammonium: N2 fixation was only observed if incubation ammonium concentrations were ≤ 25 µM, and experimental additions of ammonium reduced diazotrophy. In seep sediments, N2 fixation was dependent on CH4 and coincident with sulphate reduction, consistent with previous work showing diazotrophy by microorganisms mediating sulphate-coupled methane oxidation. However, the pattern of diazotrophy was different in whale-fall and associated reference sediments, where it was largely unaffected by CH4 , suggesting catabolically different diazotrophs at these sites.


Assuntos
Bactérias/metabolismo , Carbono/química , Carbono/metabolismo , Sedimentos Geológicos/microbiologia , Fixação de Nitrogênio/fisiologia , Compostos de Amônio , Ecossistema , Metano , Nitrogênio , Oceano Pacífico , Água do Mar , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...