Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 11(48): 30109-30131, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-35480266

RESUMO

There has been an increasing challenge from the emission of methylene blue (MB) dye-containing wastewater and its management methods in industry. The sorption process is one conventionally used method. In this study, nanoclay, nano zero valent iron (nZVI), and iron impregnated nanoclay were prepared and studied for the removal of MB dye in batch mode. The effects of operating parameters like pH, dye concentration, sorbent dosage, and contact time were investigated and optimized. The nZVI, nanoclay, and iron impregnated nanoclay sorbents showed zeta potentials of -32.1, -53.4, and -40.7 mV, respectively. All the nano adsorbents were crystalline. The nanoclay was characterized by an average surface area, pore volume and pore diameter of 43.49 m2 g-1, 0.104 cm3 g-1 and 2.806 nm, respectively. nZVI showed a surface area of 47.125 m2 g-1, pore volume of 0.119 cm3 g-1, and pore diameter of 3.291 nm. And iron impregnated nanoclay showed a surface area of 73.110 m2 g-1 with a pore volume of 15 cm3 g-1 and a pore diameter size of 3.83 nm. A Langmuir EXT nitrogen gas adsorption isotherm (R 2 ∼ 0.99) was the best fit. The thermodynamics parameters, such as ΔG° (-12.64 to -0.63 kJ mol-1), ΔH° (+0.1 to +62.15 kJ mol-1) and ΔS° (+0.10 to +0.22 kJ mol-1), confirmed that a spontaneous and endothermic adsorption process took place at a high rate of disorder. Iron impregnated nanoclay showed higher negative Gibbs free energy (-12.64 kJ mol-1), higher enthalpy change (+62.5 kJ mol-1) and entropy (+0.22 kJ mol-1) and gave a better MB removal performance. In addition, the lower negative heat of enthalpy for all adsorptions proved the dominance of physisorption. The methylene blue adsorption isotherm on nZVI and nanoclay showed the best fit with the Freundlich isotherm model with correlation coefficients (R 2) ∼0.98 and 0.99, respectively. Whereas the Langmuir adsorption isotherm was the best fit for iron impregnated nanoclay (R 2 ∼ 0.98). The adsorption activities of nZVI, nanoclay and iron impregnated nanoclay were fitted to a pseudo-second-order kinetic model with correlation coefficients (R 2) of 0.999, 0.997 and 0.983, respectively. The optimal pH 7.0 (RE: 99.1 ± 0.73%), initial MB concentration 40 ppm (RE: 99.9 ± 0.03%), contact time 120 min (RE: 99.9 ± 0.9%), and adsorbent dose 80 (99.9 ± 0.03%) were obtained for iron impregnated nanoclay. The optimal operational parameters of nanoclay and nZVI, respectively, were pH 11.0 and 13.0, initial MB concentration 20 and 20 ppm, adsorbent dose 100 and 140 mg, and contact time 120 and 140 min. In general, iron impregnated nanoclay has shown promising cationic dye adsorbance for industrial applications; but a recyclability test is suggested before scale-up.

2.
RSC Adv ; 11(30): 18539-18551, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35480950

RESUMO

For the past 15 years, nanoscale metallic iron (nZVI) has been investigated as a new tool for the treatment of heavy metal contaminated water. The removal mechanisms depend on the type of heavy metals and their thermodynamic properties. A metal whose redox potential is more negative or close to the reduction potential of Fe(0) is removed by the reduction process, while the others will be mediated by precipitation, complexation or other sorption processes. This review summarises our contemporary knowledge of nZVI aqueous chemistry, synthesis methods, mechanisms and actions (practical experiences) of heavy metal (Cd, Cu and Pb) removal and challenges of nZVI practical applications. Its inner core (iron(0)) has reducing ability towards pollutants, while the iron oxide (FeO) outer shell provides reaction sites for chemisorption and electrostatic interactions with heavy metals. Emerging studies highlighted that nZVI surfaces will have negatively charged species at higher pH and have good affinity for the removal of positively charged species such as heavy metals. Different sizes, shapes and properties of nZVI have been produced using various methods. Ferric salt reduction methods are the most common methods to produce stable and fine graded nZVI. Higher uptake of copper(ii), lead(ii) and cadmium(ii) has also been reported by various scholars. Practical pilot tests have been conducted to remove heavy metals, which gave highly satisfactory results. Challenges such as agglomeration, sedimentation, magnetic susceptibility, sorption to other fine materials in aqueous solution and toxicity of microbiomes have been reported. Emerging studies have highlighted the prospects of industrial level application of nano zero valent particles for the remediation of heavy metals and other pollutants from various industries.

3.
RSC Adv ; 11(43): 27084, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35481992

RESUMO

[This corrects the article DOI: 10.1039/D1RA01427G.].

4.
Springerplus ; 5(1): 1210, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27516948

RESUMO

The powder of root bark of Malva parviflora (Malvaceae) was successively extracted with petroleum ether (b.p. 60-80 °C), chloroform and ethanol. The chloroform extract showed antibacterial activity against Staphylococcus aureus and Escherichia coli, whereas the ethanolic extract showed antibacterial activity against only S. aureus. The chloroform extract, after column chromatographic separation on silica gel using petroleum ether:chloroform (3:1) as eluent, furnished 98 mg of white crystalline compound. The yield of the compound is 0.316 % (w/w). The compound has a melting point of 134-136 °C and the Rf value 0.56 in benzene:chloroform:acetone (1:15:1) on silica gel TLC. The compound was characterized as ß-sitosterol by physical properties, chemical test, spectral analysis (FTIR, NMR and MS) and comparing the data obtained from the literature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...