Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microb Cell Fact ; 22(1): 188, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726725

RESUMO

BACKGROUND: Plastics are an indispensable part of our daily life. However, mismanagement at their end-of-life results in severe environmental consequences. The microbial conversion of these polymers into new value-added products offers a promising alternative. In this study, we engineered the soil-bacterium Comamonas testosteroni KF-1, a natural degrader of terephthalic acid, for the conversion of the latter to the high-value product 2-pyrone-4,6-dicarboxylic acid. RESULTS: In order to convert terephthalic acid to 2-pyrone-4,6-dicarboxylic acid, we deleted the native PDC hydrolase and observed only a limited amount of product formation. To test whether this was the result of an inhibition of terephthalic acid uptake by the carbon source for growth (i.e. glycolic acid), the consumption of both carbon sources was monitored in the wild-type strain. Both carbon sources were consumed at the same time, indicating that catabolite repression was not the case. Next, we investigated if the activity of pathway enzymes remained the same in the wild-type and mutant strain. Here again, no statistical differences could be observed. Finally, we hypothesized that the presence of a pmdK variant in the degradation operon could be responsible for the observed phenotype and created a double deletion mutant strain. This newly created strain accumulated PDC to a larger extent and again consumed both carbon sources. The double deletion strain was then used in a bioreactor experiment, leading to the accumulation of 6.5 g/L of product in 24 h with an overall productivity of 0.27 g/L/h. CONCLUSIONS: This study shows the production of the chemical building block 2-pyrone-4,6-dicarboxylic acid from terephthalic acid through an engineered C. testosteroni KF-1 strain. It was observed that both a deletion of the native PDC hydrolase as well as a pmdK variant is needed to achieve high conversion yields. A product titer of 6.5 g/L in 24 h with an overall productivity of 0.27 g/L/h was achieved.


Assuntos
Comamonas testosteroni , Comamonas testosteroni/genética , Carbono , Ácidos Dicarboxílicos , Hidrolases
2.
Chemistry ; 24(57): 15254-15266, 2018 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-29882610

RESUMO

As a complement to the renowned bicyclic ß-lactam antibiotics, monocyclic analogues provide a breath of fresh air in the battle against resistant bacteria. In that framework, the present study discloses the in silico design and unprecedented ten-step synthesis of eleven nocardicin-like enantiomerically pure 2-{3-[2-(2-aminothiazol-4-yl)-2-(methoxyimino)acetamido]-2-oxoazetidin-1-yl}acetic acids starting from serine as a readily accessible precursor. The capability of this novel class of monocyclic 3-amino-ß-lactams to inhibit penicillin-binding proteins (PBPs) of various (resistant) bacteria was assessed, revealing the potential of α-benzylidenecarboxylates as interesting leads in the pursuit of novel PBP inhibitors. No deactivation by representative enzymes belonging to the four ß-lactamase classes was observed, while weak inhibition of class C ß-lactamase P99 was demonstrated.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Enterococcus faecium/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Proteínas de Ligação às Penicilinas/antagonistas & inibidores , beta-Lactamas/química , beta-Lactamas/farmacologia , Aminação , Antibacterianos/síntese química , Infecções Bacterianas/tratamento farmacológico , Simulação por Computador , Desenho Assistido por Computador , Desenho de Fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Enterococcus faecium/metabolismo , Escherichia coli/metabolismo , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Humanos , Simulação de Acoplamento Molecular , Proteínas de Ligação às Penicilinas/metabolismo , beta-Lactamas/síntese química
3.
Chemistry ; 23(71): 18002-18009, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29024090

RESUMO

The reactivity of 3-oxo-ß-lactams with respect to primary amines was investigated in depth. Depending on the specific azetidin-2-one C4 substituent, this reaction was shown to selectively produce 3-imino-ß-lactams (through dehydration), α-aminoamides (through CO elimination), or ethanediamides (through an unprecedented C3-C4 ring opening). In addition to the experimental results, the mechanisms and factors governing these peculiar transformations were also examined and elucidated by means of DFT calculations.

4.
ChemistryOpen ; 6(3): 301-319, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28638759

RESUMO

Due to the emerging resistance against classical ß-lactam-based antibiotics, a growing number of bacterial infections has become harder to treat. This alarming tendency necessitates continued research on novel antibacterial agents. Many classes of ß-lactam antibiotics are characterized by the presence of the 3-aminoazetidin-2-one core, which resembles the natural substrate of the target penicillin-binding proteins. In that respect, this Review summarizes the different synthetic pathways toward this key structure for the development of new antibacterial agents. The most extensively applied methods for 3-amino-ß-lactam ring formation are discussed, in addition to a few less common strategies. Moreover, approaches to introduce the 3-amino substituent after ring formation are also covered.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA