Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microvasc Res ; 154: 104694, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38723844

RESUMO

INTRODUCTION: Critical illness is associated with organ failure, in which endothelial hyperpermeability and tissue edema play a major role. The endothelial angiopoietin/Tie2 system, a regulator of endothelial permeability, is dysbalanced during critical illness. Elevated circulating angiopoietin-2 and decreased Tie2 receptor levels are reported, but it remains unclear whether they cause edema independent of other critical illness-associated alterations. Therefore, we have studied the effect of angiopoietin-2 administration and/or reduced Tie2 expression on microvascular leakage and edema under normal conditions. METHODS: Transgenic male mice with partial deletion of Tie2 (heterozygous exon 9 deletion, Tie2+/-) and wild-type controls (Tie2+/+) received 24 or 72 pg/g angiopoietin-2 or PBS as control (n = 12 per group) intravenously. Microvascular leakage and edema were determined by Evans blue dye (EBD) extravasation and wet-to-dry weight ratio, respectively, in lungs and kidneys. Expression of molecules related to endothelial angiopoietin/Tie2 signaling were determined by ELISA and RT-qPCR. RESULTS: In Tie2+/+ mice, angiopoietin-2 administration increased EBD extravasation (154 %, p < 0.05) and wet-to-dry weight ratio (133 %, p < 0.01) in lungs, but not in the kidney compared to PBS. Tie2+/- mice had higher pulmonary (143 %, p < 0.001), but not renal EBD extravasation, compared to wild-type control mice, whereas a more pronounced wet-to-dry weight ratio was observed in lungs (155 %, p < 0.0001), in contrast to a minor higher wet-to-dry weight ratio in kidneys (106 %, p < 0.05). Angiopoietin-2 administration to Tie2+/- mice did not further increase pulmonary EBD extravasation, pulmonary wet-to-dry weight ratio, or renal wet-to-dry weight ratio. Interestingly, angiopoietin-2 administration resulted in an increased renal EBD extravasation in Tie2+/- mice compared to Tie2+/- mice receiving PBS. Both angiopoietin-2 administration and partial deletion of Tie2 did not affect circulating angiopoietin-1, soluble Tie2, VEGF and NGAL as well as gene expression of angiopoietin-1, -2, Tie1, VE-PTP, ELF-1, Ets-1, KLF2, GATA3, MMP14, Runx1, VE-cadherin, VEGFα and NGAL, except for gene and protein expression of Tie2, which was decreased in Tie2+/- mice compared to Tie2+/+ mice. CONCLUSIONS: In mice, the microvasculature of the lungs is more vulnerable to angiopoietin-2 and partial deletion of Tie2 compared to those in the kidneys with respect to microvascular leakage and edema.

2.
PLoS One ; 18(11): e0293673, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37972011

RESUMO

BACKGROUND: The endothelial angiopoietin/Tie2 system is an important regulator of endothelial permeability and targeting Tie2 reduces hemorrhagic shock-induced organ edema in males. However, sexual dimorphism of the endothelium has not been taken into account. This study investigated whether there are sex-related differences in the endothelial angiopoietin/Tie2 system and edema formation. METHODS: Adult male and female heterozygous Tie2 knockout mice (Tie2+/-) and wild-type controls (Tie2+/+) were included (n = 9 per group). Renal and pulmonary injury were determined by wet/dry weight ratio and H&E staining of tissue sections. Protein levels were studied in plasma by ELISA and pulmonary and renal mRNA expression levels by RT-qPCR. RESULTS: In Tie2+/+ mice, females had higher circulating angiopoietin-2 (138%, p<0.05) compared to males. Gene expression of angiopoietin-1 (204%, p<0.01), angiopoietin-2 (542%, p<0.001) were higher in females compared to males in kidneys, but not in lungs. Gene expression of Tie2, Tie1 and VE-PTP were similar between males and females in both organs. Renal and pulmonary wet/dry weight ratio did not differ between Tie2+/+ females and males. Tie2+/+ females had lower circulating NGAL (41%, p<0.01) compared to males, whereas renal NGAL and KIM1 gene expression was unaffected. Interestingly, male Tie2+/- mice had 28% higher renal wet/dry weight ratio (p<0.05) compared to Tie2+/+ males, which was not observed in females nor in lungs. Partial deletion of Tie2 did not affect circulating angiopoietin-1 or angiopoietin-2, but soluble Tie2 was 44% and 53% lower in males and females, respectively, compared to Tie2+/+ mice of the same sex. Renal and pulmonary gene expression of angiopoietin-1, angiopoietin-2, estrogen receptors and other endothelial barrier regulators was comparable between Tie2+/- and Tie2+/+ mice in both sexes. CONCLUSION: Female sex seems to protect against renal, but not pulmonary edema in heterozygous Tie2 knock-out mice. This could not be explained by sex dimorphism in the endothelial angiopoietin/Tie2 system.


Assuntos
Angiopoietina-1 , Angiopoietina-2 , Animais , Feminino , Masculino , Camundongos , Angiopoietina-1/genética , Angiopoietina-1/metabolismo , Angiopoietina-2/genética , Angiopoietina-2/metabolismo , Angiopoietinas , Edema , Endotélio/metabolismo , Rim/metabolismo , Lipocalina-2 , Receptor TIE-2/genética , Receptor TIE-2/metabolismo
3.
Acta Clin Belg ; 77(1): 186-194, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32484428

RESUMO

OBJECTIVES: Gonorrhoea continues to be a public health concern in Belgium with pharyngeal and rectal infections increasing in persons with high-risk sexual behaviour. Belgian health care practitioners rely on international guidance when managing gonorrhoea resulting in non-adapted suboptimal care for the Belgian patient. This guideline will rectify this situation. METHODS: This guideline was developed following an evidence-based approach and involving a guideline development group (GDG). Research questions were prioritised by the GDG and researchers conducted a systematic review of the evidence that was assessed using GRADE approach. RESULTS: The guideline offers recommendations for gonorrhoea diagnosis, treatment and management for primary care professionals in Belgium and applies a risk group approach. This approach aims for improved identification of at-risk persons and targeted testing of at-risk groups; it includes behavioural questioning when deciding on diagnostic sampling and provides clear advice on treatment. The guideline defines when to add surveillance testing for antibiotic resistance, and what consists of good follow-up. RESULTS: A concerted application of this guideline by all stakeholders in Belgium may result in improving the diagnosis of infections and eventually addressing the emerging multi-drug resistance.


Assuntos
Gonorreia , Bélgica/epidemiologia , Gonorreia/diagnóstico , Gonorreia/tratamento farmacológico , Gonorreia/epidemiologia , Humanos , Atenção Primária à Saúde , Saúde Pública
4.
Intensive Care Med Exp ; 9(1): 30, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34169407

RESUMO

BACKGROUND: Acute kidney injury is a severe complication following cardiopulmonary bypass (CPB) and is associated with capillary leakage and microcirculatory perfusion disturbances. CPB-induced thrombin release results in capillary hyperpermeability via activation of protease-activated receptor 1 (PAR1). We investigated whether aprotinin, which is thought to prevent thrombin from activating PAR1, preserves renal endothelial structure, reduces renal edema and preserves renal perfusion and reduces renal injury following CPB. METHODS: Rats were subjected to CPB after treatment with 33.000 KIU/kg aprotinin (n = 15) or PBS (n = 15) as control. A secondary dose of 33.000 KIU/kg aprotinin was given 60 min after initiation of CPB. Cremaster and renal microcirculatory perfusion were assessed using intravital microscopy and contrast echography before CPB and 10 and 60 min after weaning from CPB. Renal edema was determined by wet/dry weight ratio and renal endothelial structure by electron microscopy. Renal PAR1 gene and protein expression and markers of renal injury were determined. RESULTS: CPB reduced cremaster microcirculatory perfusion by 2.5-fold (15 (10-16) to 6 (2-10) perfused microvessels, p < 0.0001) and renal perfusion by 1.6-fold (202 (67-599) to 129 (31-292) au/sec, p = 0.03) in control animals. Both did not restore 60 min post-CPB. This was paralleled by increased plasma creatinine (p < 0.01), neutrophil gelatinase-associated lipocalin (NGAL; p = 0.003) and kidney injury molecule-1 (KIM-1; p < 0.01). Aprotinin treatment preserved cremaster microcirculatory perfusion following CPB (12 (7-15) vs. 6 (2-10) perfused microvessels, p = 0.002), but not renal perfusion (96 (35-313) vs. 129 (31-292) au/s, p > 0.9) compared to untreated rats. Aprotinin treatment reduced endothelial gap formation (0.5 ± 0.5 vs. 3.1 ± 1.4 gaps, p < 0.0001), kidney wet/dry weight ratio (4.6 ± 0.2 vs. 4.4 ± 0.2, p = 0.046), and fluid requirements (3.9 ± 3.3 vs. 7.5 ± 3.0 ml, p = 0.006) compared to untreated rats. In addition, aprotinin treatment reduced tubulointerstitial neutrophil influx by 1.7-fold compared to untreated rats (30.7 ± 22.1 vs. 53.2 ± 17.2 neutrophil influx/section, p = 0.009). No differences were observed in renal PAR1 expression and plasma creatinine, NGAL or KIM-1 between groups. CONCLUSIONS: Aprotinin did not improve renal perfusion nor reduce renal injury during the first hour following experimental CPB despite preservation of renal endothelial integrity and reduction of renal edema.

5.
Intensive Care Med Exp ; 9(1): 23, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33997943

RESUMO

BACKGROUND: Hemorrhagic shock is associated with acute kidney injury and increased mortality. Targeting the endothelial angiopoietin/Tie2 system, which regulates endothelial permeability, previously reduced hemorrhagic shock-induced vascular leakage. We hypothesized that as a consequence of vascular leakage, renal perfusion and function is impaired and that activating Tie2 restores renal perfusion and function. METHODS: Rats underwent 1 h of hemorrhagic shock and were treated with either vasculotide or PBS as control, followed by fluid resuscitation for 4 h. Microcirculatory perfusion was measured in the renal cortex and cremaster muscle using contrast echography and intravital microscopy, respectively. Changes in the angiopoietin/Tie2 system and renal injury markers were measured in plasma and on protein and mRNA level in renal tissue. Renal edema formation was determined by wet/dry weight ratios and renal structure by histological analysis. RESULTS: Hemorrhagic shock significantly decreased renal perfusion (240 ± 138 to 51 ± 40, p < 0.0001) and cremaster perfusion (12 ± 2 to 5 ± 2 perfused vessels, p < 0.0001) compared to baseline values. Fluid resuscitation partially restored both perfusion parameters, but both remained below baseline values (renal perfusion 120 ± 58, p = 0.08, cremaster perfusion 7 ± 2 perfused vessels, p < 0.0001 compared to baseline). Hemorrhagic shock increased circulating angiopoietin-1 (p < 0.0001), angiopoietin-2 (p < 0.0001) and soluble Tie2 (p = 0.05), of which angiopoietin-2 elevation was associated with renal edema formation (r = 0.81, p < 0.0001). Hemorrhagic shock induced renal injury, as assessed by increased levels of plasma neutrophil gelatinase-associated lipocalin (NGAL: p < 0.05), kidney injury marker-1 (KIM-1; p < 0.01) and creatinine (p < 0.05). Vasculotide did not improve renal perfusion (p > 0.9 at all time points) or reduce renal injury (NGAL p = 0.26, KIM-1 p = 0.78, creatinine p > 0.9, renal edema p = 0.08), but temporarily improved cremaster perfusion at 3 h following start of fluid resuscitation compared to untreated rats (resuscitation + 3 h: 11 ± 3 vs 8 ± 3 perfused vessels, p < 0.05). CONCLUSION: Hemorrhagic shock-induced renal impairment cannot be restored by standard fluid resuscitation, nor by activation of Tie2. Future treatment strategies should focus on reducing angiopoietin-2 levels or on activating Tie2 via an alternative strategy.

6.
Shock ; 56(6): 890-900, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33927137

RESUMO

BACKGROUND: Microvascular leakage is proposed as main contributor to disturbed microcirculatory perfusion following hemorrhagic shock and fluid resuscitation, leading to organ dysfunction and unfavorable outcome. Currently, no drugs are available to reduce or prevent microvascular leakage in clinical practice. We therefore aimed to provide an overview of therapeutic agents targeting microvascular leakage following experimental hemorrhagic shock and fluid resuscitation. METHODS: PubMed, EMBASE.com, and Cochrane Library were searched in January 2021 for preclinical studies of hemorrhagic shock using any therapeutic agent on top of standard fluid resuscitation. Primary outcome was vascular leakage, defined as edema, macromolecule extravasation, or glycocalyx degradation. Drugs were classified by targeting pathways and subgroup analyses were performed per organ. RESULTS: Forty-five studies, published between 1973 and 2020, fulfilled eligibility criteria. The included studies tested 54 different therapeutics mainly in pulmonary and intestinal vascular beds. Most studies induced trauma besides hemorrhagic shock. Forty-four therapeutics (81%) were found effective to reduce microvascular leakage, edema formation, or glycocalyx degradation in at least one organ. Targeting oxidative stress and apoptosis was the predominantly effective strategy (SMD: -2.18, CI [-3.21, -1.16], P < 0.0001). Vasoactive agents were found noneffective in reducing microvascular leakage (SMD: -0.86, CI [-3.07, 1.36], P = 0.45). CONCLUSION: Pharmacological modulation of pathways involved in cell metabolism, inflammation, endothelial barrier regulation, sex hormones and especially oxidative stress and apoptosis were effective in reducing microvascular leakage in experimental hemorrhagic shock with fluid resuscitation. Future studies should investigate whether targeting these pathways can restore microcirculatory perfusion and reduce organ injury following hemorrhagic shock. SYSTEMATIC REVIEW REGISTRATION NUMBER: CRD42018095432.


Assuntos
Hidratação/efeitos adversos , Microcirculação , Ressuscitação/métodos , Choque Hemorrágico/complicações , Doenças Vasculares/tratamento farmacológico , Doenças Vasculares/etiologia , Animais
7.
J Clin Med ; 10(3)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530543

RESUMO

Obesity is a frequent comorbidity among patients undergoing cardiac surgery with cardiopulmonary bypass (CPB). Cardiac surgery with CPB impairs microcirculatory perfusion, which is associated with multiple organ failure. As microvascular function is frequently compromised in obese patients, we studied whether cardiac surgery with CPB has a more detrimental effect on microcirculatory perfusion in obese patients. Sublingual microcirculatory perfusion was measured with sidestream dark field (SDF) imaging in obese patients (body mass index ≥32 kg/m2; n = 14) without type II diabetes mellitus and in lean patients (BMI 20-25 kg/m2; n = 22) undergoing cardiac surgery with CPB. CPB reduced systolic blood pressure and mean arterial pressure more profoundly in lean compared with obese patients (SBP: 38% vs. 18%; MAP: 11% vs. 8%, p < 0.05), and both restored after weaning from CPB. No differences were present in intraoperative glucose, hematocrit, hemoglobin, lactate, and blood gas values between obese and lean patients. Microcirculatory perfusion did not differ between obese and lean patients the day before surgery. CPB decreased microcirculatory perfusion with 9% in both groups, but this was only significant in lean patients (p < 0.05). Three days following surgery, microcirculatory perfusion was restored in both groups. In conclusion, microcirculatory perfusion was equally disturbed during cardiac surgery with CPB in metabolically healthy obese patients compared to lean patients.

8.
Microcirculation ; 27(8): e12650, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32688443

RESUMO

OBJECTIVE: Microcirculatory perfusion disturbances following hemorrhagic shock and fluid resuscitation contribute to multiple organ dysfunction and mortality. Standard fluid resuscitation is insufficient to restore microcirculatory perfusion; however, additional therapies are lacking. We conducted a systematic search to provide an overview of potential non-fluid-based therapeutic interventions to restore microcirculatory perfusion following hemorrhagic shock. METHODS: A structured search of PubMed, EMBASE, and Cochrane Library was performed in March 2020. Animal studies needed to report at least one parameter of microcirculatory flow (perfusion, red blood cell velocity, functional capillary density). RESULTS: The search identified 1269 records of which 48 fulfilled all eligibility criteria. In total, 62 drugs were tested of which 29 were able to restore microcirculatory perfusion. Particularly, complement inhibitors (75% of drugs tested successfully restored blood flow), endothelial barrier modulators (100% successful), antioxidants (66% successful), drugs targeting cell metabolism (83% successful), and sex hormones (75% successful) restored microcirculatory perfusion. Other drugs consisted of attenuation of inflammation (100% not successful), vasoactive agents (68% not successful), and steroid hormones (75% not successful). CONCLUSION: Improving mitochondrial function, inhibition of complement inhibition, and reducing microvascular leakage via restoration of endothelial barrier function seem beneficial to restore microcirculatory perfusion following hemorrhagic shock and fluid resuscitation.


Assuntos
Hidratação , Microcirculação , Ressuscitação , Choque Hemorrágico , Animais , Modelos Animais de Doenças , Humanos , Choque Hemorrágico/fisiopatologia , Choque Hemorrágico/terapia
9.
Crit Care ; 24(1): 218, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32404120

RESUMO

BACKGROUND: Microcirculatory perfusion disturbances are associated with increased morbidity and mortality in patients undergoing cardiac surgery with cardiopulmonary bypass (CPB). Technological advancements made it possible to monitor sublingual microcirculatory perfusion over time. The goal of this review is to provide an overview of the course of alterations in sublingual microcirculatory perfusion following CPB. The secondary goal is to identify which parameter of sublingual microcirculatory perfusion is most profoundly affected by CPB. METHODS: PubMed and Embase databases were systematically searched according to PRISMA guidelines and as registered in PROSPERO. Studies that reported sublingual microcirculatory perfusion measurements before and after onset of CPB in adult patients undergoing cardiac surgery were included. The primary outcome was sublingual microcirculatory perfusion, represented by functional capillary density (FCD), perfused vessel density (PVD), total vessel density (TVD), proportion of perfused vessels (PPV), and microvascular flow index (MFI). RESULTS: The search identified 277 studies, of which 19 fulfilled all eligibility criteria. Initiation of CPB had a profound effect on FCD, PVD, or PPV. Seventeen studies (89%) reported one or more of these parameters, and in 11 of those studies (65%), there was a significant decrease in these parameters during cardiac surgery; the other 6 studies (35%) reported no effect. In 29% of the studies, FCD, PVD, or PPV normalized by the end of cardiac surgery, and in 24% percent of the studies, this effect lasted at least 24 h. There was no clear effect of CPB on TVD and a mixed effect on MFI. CONCLUSION: CPB during cardiac surgery impaired sublingual microcirculatory perfusion as reflected by reduced FCD, PVD, and PPV. Four studies reported this effect at least 24 h after surgery. Further research is warranted to conclude on the duration of CPB-induced microcirculatory perfusion disturbances and the relationship with clinical outcome. TRIAL REGISTRATION: PROSPERO, CRD42019127798.


Assuntos
Ponte Cardiopulmonar/efeitos adversos , Microcirculação/fisiologia , Perfusão/normas , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias
10.
Clin Hemorheol Microcirc ; 75(2): 121-133, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31929146

RESUMO

BACKGROUND: Endothelial hyperpermeability is suggested to play a role in the development of microcirculatory perfusion disturbances and organ failure following hemorrhagic shock, but evidence is limited. OBJECTIVE: To study the effect of plasma from traumatic hemorrhagic shock patients on in vitro endothelial barrier function. METHODS: Plasma from traumatic hemorrhagic shock patients was obtained at the emergency department (ED), the intensive care unit (ICU), 24 h after ICU admission and from controls (n = 8). Sublingual microcirculatory perfusion was measured using incident dark field videomicroscopy at matching time points. Using electric cell-substrate impedance sensing, the effects of plasma exposure on in vitro endothelial barrier function of human endothelial cells were assessed. RESULTS: Plasma from traumatic hemorrhagic shock patients collected at ED admission induced a 19% loss of in vitro endothelial resistance compared to plasma from controls (p < 0.001). This loss was due to reduced cell-cell contacts (p < 0.01). Plasma withdrawn at later time points did not affect endothelial barrier function (p > 0.99). Interestingly, in vitro endothelial resistance showed a positive association with in vivo microcirculatory perfusion (r = 0.56, p < 0.01). CONCLUSIONS: Plasma from traumatic hemorrhagic shock patients obtained following ED admission, but not at later stages, induced in vitro endothelial hyperpermeability. This coincided with in vivo microcirculatory perfusion disturbances.


Assuntos
Células Endoteliais/fisiologia , Adulto , Feminino , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Choque Hemorrágico/fisiopatologia , Adulto Jovem
11.
J Crit Care ; 56: 63-72, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31855708

RESUMO

PURPOSE: To compare the effectiveness of different types of pharmacological agents to reduce organ specific edema following cardiopulmonary bypass (CPB). METHODS: Pubmed, Embase.com and Cochrane were searched for studies administrating a pharmacological agent before CPB. Primary outcome was postoperative edema. RESULTS: Forty-four studies (clinical n = 6, preclinical n = 38) fulfilled eligibility criteria. Steroids were used in most clinical studies (n = 5, 83%) and reduced postoperative edema in 4 studies, however heterogeneity precluded meta-analysis. In preclinical studies, a total of 31 different drugs were tested of which 20 (65%) reduced edema in at least one organ. Particularly neutrophil inhibitors, and modulators of coagulation or endothelial barrier reduced pulmonary edema (SMD -2.77 [-3.93, -1.61]; -1.29 [-2.12, -0.46], -2.33 [-4.69, 0.03], respectively) compared to no treatment. Reducing renal (SMD -0.91 [CI -1.65 to -0.18]), intestinal (SMD -1.98 [CI -3.92 to -0.04]) or myocardial (SMD -1.95 [CI -3.91 to -0.01]) edema following CPB required specific modulators of endothelial barrier. CONCLUSION: Overall, neutrophil inhibitors and direct modulators of endothelial barrier (PAR1, Tie2 signaling) most effectively reduced edema following CPB, in particular pulmonary edema. Future research should focus on a combination of these strategies to reduce edema and assess the effect on organ function and outcome following CPB.


Assuntos
Ponte Cardiopulmonar/efeitos adversos , Edema/tratamento farmacológico , Edema/prevenção & controle , Antioxidantes/uso terapêutico , Capilares , Pesquisa Comparativa da Efetividade , Endotélio Vascular/metabolismo , Humanos , Neutrófilos/metabolismo , Permeabilidade , Período Pós-Operatório , Resultado do Tratamento
12.
J Cardiothorac Vasc Anesth ; 34(4): 912-919, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31787433

RESUMO

OBJECTIVE: Heparin biocompatible coating frequently is used to reduce inflammation and blood coagulation during cardiopulmonary bypass (CPB) in cardiac surgery. Whether heparin coating is protective or damaging to the vascular endothelium is unclear. The authors investigated whether heparin-coated (HC) circuits are associated with better preservation of microcirculatory perfusion and glycocalyx dimensions compared with nonheparin phosphorylcholine-coated (PC) circuits. DESIGN: Prospective, randomized blinded study. SETTING: Tertiary university hospital. PARTICIPANTS: A total of 26 adults undergoing elective coronary artery bypass graft surgery with CPB. INTERVENTIONS: PC (n = 13) versus HC circuits (n = 13). MEASUREMENTS AND MAIN RESULTS: Sublingual microcirculatory perfusion was measured before, during, and after CPB using sidestream dark field imaging and analyzed for perfused vessel density and perfused boundary region, an inverse parameter for glycocalyx dimensions. Onset of CPB was associated with an increase in perfused boundary region in the PC group that continued until the third postoperative day (2.0 ± 0.2 to 2.5 ± 0.2 µm; p = 0.018). This was paralleled by increased plasma syndecan-1 levels in the PC group. Contrastingly, both parameters remained unaltered in the HC group compared with baseline levels. CPB decreased perfused vessel density in both groups (CPB v pre-CPB: PC: 17 ± 2 to 13 ± 2 mm/mm2, p = 0.006; HC: 16 ± 2 to 11 ± 2 mm/mm2, p = 0.003) and remained equally altered in the first 3 postoperative days. CONCLUSION: The use of an HC circuit is associated with better preservation of the endothelial glycocalyx compared with PC circuits, whereas microcirculatory perfusion was disturbed equally in both groups. Hence, CPB-induced microcirculatory perfusion disturbances seem to be coating independent.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Fosforilcolina , Adulto , Ponte Cardiopulmonar , Heparina , Humanos , Microcirculação , Estudos Prospectivos
13.
Crit Care ; 23(1): 117, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30975180

RESUMO

BACKGROUND: Endothelial hyperpermeability following cardiopulmonary bypass (CPB) contributes to microcirculatory perfusion disturbances and postoperative complications after cardiac surgery. We investigated the postoperative course of renal and pulmonary endothelial barrier function and the association with microcirculatory perfusion and angiopoietin-2 levels in patients after CPB. METHODS: Clinical data, sublingual microcirculatory data, and plasma samples were collected from patients undergoing coronary artery bypass graft surgery with CPB (n = 17) before and at several time points up to 72 h after CPB. Renal and pulmonary microvascular endothelial cells were incubated with patient plasma, and in vitro endothelial barrier function was assessed using electric cell-substrate impedance sensing. Plasma levels of angiopoietin-1,-2, and soluble Tie2 were measured, and the association with in vitro endothelial barrier function and in vivo microcirculatory perfusion was determined. RESULTS: A plasma-induced reduction of renal and pulmonary endothelial barrier function was observed in all samples taken within the first three postoperative days (P < 0.001 for all time points vs. pre-CPB). Angiopoietin-2 and soluble Tie2 levels increased within 72 h after CPB (5.7 ± 4.4 vs. 1.7 ± 0.4 ng/ml, P < 0.0001; 16.3 ± 4.7 vs. 11.9 ± 1.9 ng/ml, P = 0.018, vs. pre-CPB), whereas angiopoietin-1 remained stable. Interestingly, reduced in vitro renal and pulmonary endothelial barrier moderately correlated with reduced in vivo microcirculatory perfusion after CPB (r = 0.47, P = 0.005; r = 0.79, P < 0.001). In addition, increased angiopoietin-2 levels moderately correlated with reduced in vitro renal and pulmonary endothelial barrier (r = - 0.46, P < 0.001; r = - 0.40, P = 0.005) and reduced in vivo microcirculatory perfusion (r = - 0.43, P = 0.01; r = - 0.41, P = 0.03). CONCLUSIONS: CPB is associated with an impairment of in vitro endothelial barrier function that continues in the first postoperative days and correlates with reduced postoperative microcirculatory perfusion and increased circulating angiopoietin-2 levels. These results suggest that angiopoietin-2 is a biomarker for postoperative endothelial hyperpermeability, which may contribute to delayed recovery of microcirculatory perfusion after CPB. TRIAL REGISTRATION: NTR4212 .


Assuntos
Ponte Cardiopulmonar/efeitos adversos , Células Endoteliais/fisiologia , Microcirculação/fisiologia , Idoso , Angiopoietina-1/análise , Angiopoietina-1/sangue , Angiopoietina-2/análise , Angiopoietina-2/sangue , Biomarcadores/análise , Biomarcadores/sangue , Ponte Cardiopulmonar/métodos , Células Endoteliais/metabolismo , Feminino , Humanos , Rim/irrigação sanguínea , Rim/fisiopatologia , Pulmão/irrigação sanguínea , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Receptor TIE-2/análise , Receptor TIE-2/sangue
14.
Microcirculation ; 22(4): 267-75, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25689594

RESUMO

OBJECTIVE: We investigated whether hemodynamic optimization of systemic tissue perfusion based on PPV and CI improves microcirculatory perfusion when compared to a MAP-based strategy in patients undergoing elective abdominal surgery. METHODS: Patients were randomized into a PPV/CI guided group (n = 13, target PPV <12%, CI >2.5 L/min/m(2) , and MAP >70 mmHg) or MAP-guided group (n = 18, target MAP >70 mmHg). PPV, CI, and MAP were measured using noninvasive arterial blood pressure measurements. Sublingual microcirculatory perfusion was measured at one, two, and three hours following anesthesia induction, and quantified as TVD, PVD or the proportion of perfused vessels. Data were analyzed using ANOVA RM. RESULTS: Patients in the PPV/CI group required more fluid administration than control patients (1927 ± 747 mL versus 1283 ± 582 mL, respectively; p = 0.01). Despite this difference, we observed similar values for TVD (RM; F(1.28) = 0.01; p = 0.92), PVD (RM; F(1.28) = 0.09; p = 0.77) and the proportion of perfused vessels (RM; F(1.28) = 0.01; p = 0.76) in both groups. CONCLUSION: Hemodynamic optimization of systemic tissue perfusion is not associated with improvement of microcirculatory perfusion compared to a MAP-guided protocol in patients undergoing abdominal surgery.


Assuntos
Procedimentos Cirúrgicos Eletivos , Hemodinâmica , Microcirculação , Assistência Perioperatória , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Perfusão
15.
J Biol Chem ; 289(28): 19799-809, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-24872418

RESUMO

The two-partner secretion (TPS) systems of Gram-negative bacteria secrete large TpsA exoproteins by a dedicated TpsB transporter in the outer membrane. TpsBs contain an N-terminal module located in the periplasm that includes two polypeptide transport-associated (POTRA) domains. These are thought to initiate secretion of a TpsA by binding its N-terminal secretion signal, called the TPS domain. Neisseria meningitidis encodes up to five TpsA proteins that are secreted via only two TpsB transporters: TpsB1 and TpsB2. Of these two, the TpsB2 recognizes the TPS domains of all TpsAs, despite their sequence diversity. By contrast, the TpsB1 shows a limited recognition of a TPS domain that is shared by two TpsAs. The difference in substrate specificity of the TpsBs enabled us to investigate the role of the POTRA domains in the selection of TPS domains. We tested secretion of TPS domains or full-length TpsAs by TpsB mutants with deleted, duplicated, and exchanged POTRA domains. Exchanging the two POTRA domains of a TpsB resulted in a switch in specificity. Furthermore, exchanging a single POTRA domain showed that each of the two domains contributed to the cargo selection. Remarkably, the order of the POTRA domains could be reversed without affecting substrate selection, but this aberrant order did result in an alternatively processed secretion product. Our results suggest that secretion of a TpsA is initiated by engaging both POTRA domains of a TpsB transporter and that these select the cognate TpsAs for secretion.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/fisiologia , Proteínas de Transporte/metabolismo , Neisseria meningitidis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Neisseria meningitidis/genética , Estrutura Terciária de Proteína , Transporte Proteico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...