Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(1): e17096, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273477

RESUMO

Forestation efforts are accelerating across the globe in the fight against global climate change, in order to restore biodiversity, and to improve local livelihoods. Yet, so far the non-local effects of forestation on rainfall have largely remained a blind spot. Here we build upon emerging work to propose that targeted rainfall enhancement may also be considered in the prioritization of forestation. We show that the tools to achieve this are rapidly becoming available, but we also identify drawbacks and discuss which further developments are still needed to realize robust assessments of the rainfall effects of forestation in the face of climate change. Forestation programs may then mitigate not only global climate change itself but also its adverse effects in the form of drying.


Assuntos
Biodiversidade , Mudança Climática , Ecossistema
2.
J Environ Manage ; 348: 119262, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37866179

RESUMO

Protecting and increasing linear landscape elements (LLEs) in agricultural lands is regarded as a possible solution for a transition to a more biodiverse agricultural system. However, optimizing the spatial configuration of LLEs protected areas is challenging, especially given the demand for land for food production. Systematic Conservation Planning (SCP) can address this challenge, by prioritizing cost-efficient protection areas. We used a SCP approach to look at the LLEs network in the Province of Noord-Brabant in the Netherlands, identifying the possible trade-off between optimizing species conservation, costs and the monetary values of ecosystem services (ES). For this we defined two scenarios. One scenario focuses on achieving species conservation targets at the minimum cost, and the other focuses on achieving targets while maximizing the benefits provided by ES. For each scenario, we further developed two land-management options, namely land-sharing and land-sparing. For each solution, we tested their cost-effectiveness by calculating implementation costs, economic benefits provided by ES, and cost/benefit ratios. First, our scenario analysis indicates that the economic benefits provided by ES always outweigh the implementation costs. Second, it shows that including ES as co-benefits in SCP (Maximize ES Scenario) yields more cost-efficient conservation solutions. Third, both land-sharing and land-sparing are possible cost-efficient approaches to achieve conservation targets. Our results are spatially explicit and identify crucial habitat areas for the conservation of the selected species, which represent 12-20% of the current unprotected network of LLEs. Our findings showcase net economic benefit of conserving species and LLEs, thus representing an additional reason for biodiversity conservation.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Conservação dos Recursos Naturais/métodos , Análise Custo-Benefício , Países Baixos , Biodiversidade
3.
Glob Environ Change ; 82: 1-14, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37693692

RESUMO

Deltas play a critical role in the ambition to achieve global sustainable development given their relatively large shares in population and productive croplands, as well as their precarious low-lying position between upstream river basin development and rising seas. The large pressures on these systems risk undermining the persistence of delta societies, economies, and ecosystems. We analyse possible future development in 49 deltas around the globe under the Shared Socio-economic and Representative Concentration Pathways until 2100. Population density, urban fraction, and total and irrigated cropland fraction are three to twelve times greater in these deltas, on average, than in the rest of the world. Maximum river water discharges are projected to increase by 11-33 % and river sediment discharges are projected to decrease 26-37 % on average, depending on the scenario. Regional sea-level rise reaches almost 1.0 m by 2100 for certain deltas in the worst-case scenario, increasing to almost 2.0 m of relative rise considering land subsidence. Extreme sea levels could be much higher still-reaching over 4.0 m by 2100 for six of the 49 deltas analysed. Socio-economic conditions to support adaptation are the weakest among deltas with the greatest pressures, compounding the challenge of sustainable development. Asian and African deltas stand out as having heightened socio-economic challenges-huge population and land use pressures in most Asian deltas and the Nile delta; low capacity for adaptation in most African deltas and the Irrawaddy delta. Although, deltas in other parts of the world are not immune from these and other pressures, either. Because of unique pressures and processes operating in deltas, as in other "hotspots" such as small islands, mountains, and semi-arid areas, we recommend greater consideration and conceptualisation of environmental processes in global sustainable development agendas and in the Integrated Assessment Models used to guide global policy.

4.
Plant Environ Interact ; 4(4): 175-187, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37583875

RESUMO

Drought and flooding occur at opposite ends of the soil moisture spectrum yet their resulting stress responses in plants share many similarities. Drought limits root water uptake to which plants respond with stomatal closure and reduced leaf gas exchange. Flooding limits root metabolism due to soil oxygen deficiency, which also limits root water uptake and leaf gas exchange. As drought and flooding can occur consecutively in the same system and resulting plant stress responses share similar mechanisms, a single theoretical framework that integrates plant responses over a continuum of soil water conditions from drought to flooding is attractive. Based on a review of recent literature, we integrated the main plant eco-physiological mechanisms in a single theoretical framework with a focus on plant water transport, plant oxygen dynamics, and leaf gas exchange. We used theory from the soil-plant-atmosphere continuum modeling as "backbone" for our framework, and subsequently incorporated interactions between processes that regulate plant water and oxygen status, abscisic acid and ethylene levels, and the resulting acclimation strategies in response to drought, waterlogging, and complete submergence. Our theoretical framework provides a basis for the development of mathematical models to describe plant responses to the soil moisture continuum from drought to flooding.

5.
Water Res ; 241: 120157, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37300966

RESUMO

Pharmaceuticals are known to widely occur in the environment and to affect the health of ecosystems. Sewage treatment plants (STPs) are main emission pathways for pharmaceuticals, which are often not sufficiently removed during wastewater treatment. In Europe, STP treatment requirements are specified under the Urban WasteWater Treatment Directive (UWWTD). The introduction of advanced treatment techniques, such as ozonation and activated carbon, under the UWWTD is expected to be an important option to reduce pharmaceutical emissions. In this study, we present a European-wide analysis of STPs reported under the UWWTD, their current treatment level and potential to remove a set of 58 prioritised pharmaceuticals. Three different scenarios were analysed to show 1) UWWTD present effectiveness, 2) the effectiveness at full UWWTD compliance, and 3) the effectiveness when advanced treatment is implemented at STPs with a treatment capacity of >100.000 person equivalents. Based on a literature study, the potential of individual STPs to reduce pharmaceutical emissions ranged from an average of 9% for STPs with primary treatment to 84% for STPs applying advanced treatment. Results of our calculations show that European-wide emission of pharmaceuticals can be reduced with 68% when large STPs are updated with advanced treatment, but spatial differences exist. We argue that adequate attention should also be paid with regards to preventing environmental impacts of STPs with a capacity <100.000 p.e. Circa 44% of total STP effluent is emitted near Natura2000 sites (EU nature protection areas). Of all surface waters receiving STP effluent for which the ecological status has been assessed under the Water Framework Directive, 77% have a status of less than good. Relatively often only primary treatment is applied to wastewater emitted into coastal waters. This analysis can be used to further model pharmaceutical concentrations in European surface waters, to identify STPs for which more advanced treatment might be required and to protect EU aquatic biodiversity.


Assuntos
Esgotos , Poluentes Químicos da Água , Humanos , Esgotos/análise , Poluentes Químicos da Água/análise , Ecossistema , Águas Residuárias , Preparações Farmacêuticas , Monitoramento Ambiental/métodos
6.
Environ Sci Process Impacts ; 25(6): 1067-1081, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37199459

RESUMO

Measures are needed to protect water sources from substances that are mobile, persistent and toxic (PMT) or very persistent and very mobile (vPvM). PMT/vPvM substances are used in a diverse range of applications, including consumer products. The combined application of the essential-use and functional substitution concepts has been proposed to phase out substances of concern and support the transition to safer and more sustainable chemicals, a key goal of the European Commission's Chemicals Strategy for Sustainability. Here, we first identified the market share of PMT/vPvM containing cosmetic products. We found that 6.4% of cosmetic products available on the European market contain PMT or vPvM substances. PMT/vPvM substances were most often found in hair care products. Based on their high occurrence, the substances Allura red (CAS 25956-17-6), benzophenone-4 (CAS 4065-45-6) and climbazole (CAS 38083-17-9) were selected as case-studies for assessment of their functionality, availability of safer alternatives and essentiality. Following the functional substitution framework, we found that the technical function of Allura red was not necessary for the performance of some cosmetic products, making the use non-essential. For other applications of Allura red, as well as all applications of benzophenone-4 and climbazole, the technical function of the chemical was considered necessary for the performance. Via the alternative's assessment procedure, which used experimental and in silico data and three different multicriteria decision analysis (MCDA) strategies, safer alternatives were identified for all case-study chemicals. All assessed uses of PMT/vPvM substances were thus deemed non-essential and should consequently be phased out.


Assuntos
Benzofenonas , Cosméticos , Humanos
7.
J Environ Manage ; 342: 118078, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37209644

RESUMO

While pesticides are essential to agriculture and food systems to sustain current production levels, they also lead to significant environmental impacts. The use of pesticides is constantly increasing globally, driven mainly by a further intensification of agriculture, despite stricter regulations and higher pesticide effectiveness. To further the understanding of future pesticide use and make informed farm-to-policy decisions, we developed Pesticide Agricultural Shared Socio-economic Pathways (Pest-AgriSSPs) in six steps. The Pest-Agri-SSPs are developed based on an extensive literature review and expert feedback approach considering significant climate and socio-economic drivers from farm to continental scale in combination with multiple actors impacting them. In literature, pesticide use is associated with farmer behaviour and practices, pest damage, technique and efficiency of pesticide application, agricultural policy and agriculture demand and production. Here, we developed PestAgri-SSPs upon this understanding of pesticide use drivers and relating them to possible agriculture development as described by the Shared Socio-economic Pathways for European agriculture and food systems (Eur-Agri-SSPs).The Pest-AgriSSPs are developed to explore European pesticide use in five scenarios representing low to high challenges to mitigation and adaptation up to 2050. The most sustainable scenario (Pest-Agri-SSP1) shows a decrease in pesticide use owing to sustainable agricultural practices, technological advances and better implementation of agricultural policies. On the contrary, the Pest-Agri-SSP3 and Pest-Agri-SSP4 show a higher increase in pesticide use resulting from higher challenges from pest pressure, resource depletion and relaxed agricultural policies. Pest-Agri-SSP2 presents a stabilised pesticide use resulting from stricter policies and slow transitions by farmers to sustainable agricultural practices. At the same time, pest pressure, climate change and food demand pose serious challenges. Pest-Agri-SSP5 shows a decrease in pesticide use for most drivers, influenced mainly by rapid technological development and sustainable agricultural practices. However, Pest-Agri-SSP5 also presents a relatively low rise in pesticide use driven by agricultural demand, production, and climate change. Our results highlight the need for a holistic approach to tackle pesticide use, considering the identified drivers and future developments. The storylines and qualitative assessment provide a platform to make quantitative assumptions for numerical modelling and evaluating policy targets.


Assuntos
Praguicidas , Agricultura/métodos , Europa (Continente) , Meio Ambiente , Fatores Socioeconômicos
8.
Nat Ecol Evol ; 6(8): 1064-1076, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35879539

RESUMO

Responses of terrestrial ecosystems to climate change have been explored in many regions worldwide. While continued drying and warming may alter process rates and deteriorate the state and performance of ecosystems, it could also lead to more fundamental changes in the mechanisms governing ecosystem functioning. Here we argue that climate change will induce unprecedented shifts in these mechanisms in historically wetter climatic zones, towards mechanisms currently prevalent in dry regions, which we refer to as 'dryland mechanisms'. We discuss 12 dryland mechanisms affecting multiple processes of ecosystem functioning, including vegetation development, water flow, energy budget, carbon and nutrient cycling, plant production and organic matter decomposition. We then examine mostly rare examples of the operation of these mechanisms in non-dryland regions where they have been considered irrelevant at present. Current and future climate trends could force microclimatic conditions across thresholds and lead to the emergence of dryland mechanisms and their increasing control over ecosystem functioning in many biomes on Earth.


Assuntos
Mudança Climática , Ecossistema , Carbono , Plantas
9.
Sci Total Environ ; 836: 155530, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35489496

RESUMO

The widespread use of chemicals has led to significant water quality concerns, and their use is still increasing. Hence, there is an urgent need to understand the possible future trends in chemical emissions to water systems. This paper proposes a general framework for developing emission scenarios for chemicals to water using the Shared Socio-economic Pathways (SSPs) based on an emission-factor approach. The proposed approach involves three steps: (i) identification of the main drivers of emissions, (ii) quantification of emission factors based on analysis of publicly available data, and (iii) projection of emissions based on projected changes in the drivers and emission factors. The approach was tested in Europe for five chemical groups and on a national scale for five specific chemicals representing pharmaceuticals, pesticides, and industrial chemicals. The resulting emission scenarios show widely diverging trends of increased emissions by 240% for ibuprofen in SSP3 (regional rivalry) to a 68% decrease for diclofenac in SSP1 (sustainable development) by 2050. While emissions typically decrease in SSP1, they follow the historical trend in SSP2 (middle-of-the-road scenario) and show an increase in the regional rivalry scenario SSP3 for most selected chemicals. Overall, the framework allows understanding of future chemical emissions trends as a function of the socio-economic trends as captured in the SSPs. Our scenarios for chemical emissions can thus be used to model future aqueous emissions to support risk assessment. While the framework can be easily extended to other pharmaceuticals and pesticides, it heavily leans on the availability and quality of historical emission data and a detailed understanding of emission sources for industrial chemicals.


Assuntos
Praguicidas , Qualidade da Água , Europa (Continente) , Preparações Farmacêuticas , Fatores Socioeconômicos
10.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34521751

RESUMO

Northern peatlands store large amounts of carbon. Observations indicate that forests and peatlands in northern biomes can be alternative stable states for a range of landscape settings. Climatic and hydrological changes may reduce the resilience of peatlands and forests, induce persistent shifts between these states, and release the carbon stored in peatlands. Here, we present a dynamic simulation model constrained and validated by a wide set of observations to quantify how feedbacks in water and carbon cycling control resilience of both peatlands and forests in northern landscapes. Our results show that 34% of Europe (area) has a climate that can currently sustain existing rainwater-fed peatlands (raised bogs). However, raised bog initiation and restoration by water conservation measures after the original peat soil has disappeared is only possible in 10% of Europe where the climate allows raised bogs to initiate and outcompete forests. Moreover, in another 10% of Europe, existing raised bogs (concerning ∼20% of the European raised bogs) are already affected by ongoing climate change. Here, forests may overgrow peatlands, which could potentially release in the order of 4% (∼24 Pg carbon) of the European soil organic carbon pool. Our study demonstrates quantitatively that preserving and restoring peatlands requires looking beyond peatland-specific processes and taking into account wider landscape-scale feedbacks with forest ecosystems.


Assuntos
Carbono/química , Ciclo do Carbono , Mudança Climática , Ecossistema , Europa (Continente) , Florestas , Solo/química , Água/química , Áreas Alagadas
11.
Glob Chang Biol ; 27(19): 4686-4696, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34319636

RESUMO

Atmospheric moisture recycling effectively increases the amount of usable water over land as the water can undergo multiple precipitation-evapotranspiration cycles. Differences in land cover and climate regulate the evapotranspiration flux. Forests can have deep roots that access groundwater facilitating transpiration throughout the dry season independent of precipitation. This stable transpiration buffers the forest against precipitation variability. However, it is not known whether the buffering effect, already modeled for tropical forests, is common to all forests globally. Here we apply a state-of-the-art Lagrangian moisture tracking model (UTrack) to study whether forest land cover in the upwind precipitationshed can lead to a reduction in monthly precipitation variability downwind. We found a significant buffering effect of forests in the precipitation variability of 10 out of 14 biomes globally. On average, if 50% of precipitation originates from forest, then we find a reduction in the coefficient of variation of monthly precipitation of 60%. We also observed that a high fraction of precipitation from non-forest land sources tends to have the opposite effect, that is, no buffering effect. The average variation of monthly precipitation was 69% higher in areas where 50% of precipitation originates from non-forest land sources in the precipitationshed. Our results emphasize the importance of land cover composition in the precipitationshed to buffer precipitation variability downwind, in particular forest cover. Understanding the influence of land cover in a precipitationshed on atmospheric moisture transport is key for evaluating an area's water-climate regulatory ecosystem services and may become increasingly important due to continued changes in land cover and climate change.


Assuntos
Ecossistema , Florestas , Mudança Climática , Água
12.
Open Res Eur ; 1: 154, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37645192

RESUMO

By 2050, the global population is predicted to reach nine billion, with almost three quarters living in cities. The road to 2050 will be marked by changes in land use, climate, and the management of water and food across the world. These global changes (GCs) will likely affect the emissions, transport, and fate of chemicals, and thus the exposure of the natural environment to chemicals. ECORISK2050 is a Marie Sklodowska-Curie Innovative Training Network that brings together an interdisciplinary consortium of academic, industry and governmental partners to deliver a new generation of scientists, with the skills required to study and manage the effects of GCs on chemical risks to the aquatic environment. The research and training goals are to: (1) assess how inputs and behaviour of chemicals from agriculture and urban environments are affected by different environmental conditions, and how different GC scenarios will drive changes in chemical risks to human and ecosystem health; (2) identify short-to-medium term adaptation and mitigation strategies, to abate unacceptable increases to risks, and (3) develop tools for use by industry and policymakers for the assessment and management of the impacts of GC-related drivers on chemical risks. This project will deliver the next generation of scientists, consultants, and industry and governmental decision-makers who have the knowledge and skillsets required to address the changing pressures associated with chemicals emitted by agricultural and urban activities, on aquatic systems on the path to 2050 and beyond.

13.
Sci Total Environ ; 752: 142214, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33207495

RESUMO

Worldwide, agricultural irrigation currently accounts for 69% of freshwater withdrawal. Countries with a temperate climate, such as the Netherlands, experience periodic freshwater shortages in agriculture. The pressure on available freshwater will increase due to climate change and a growing demand for freshwater by e.g. industrial activities. Possible alternative water resources are considered in order to meet the current and future water demand. In this study we explore where, and how much, sewage treatment plant (STP) effluent can directly be reused in agricultural sub-surface irrigation (SSI) during an average and a dry season scenario, for all active (335) Dutch STPs. SSI systems may have a higher water demand as part of the STP effluent is transported with groundwater flow, although aboveground irrigation has a loss of water due to interception. Furthermore, such aboveground irrigation systems provide direct contact of crops with irrigation water. SSI systems provide a soil barrier which may function as a filter and buffer zone. In the Dutch situation, direct intentional reuse of STP effluent can fulfill up to 25% of croplands SSI water demand present within a five-kilometer transport buffer from the STPs during an average season and 17% during a dry season. Hereto, respectively, 78% and 84% of the total available Dutch STP effluent would be used. Thus, the intentional direct STP effluent reuse in agricultural SSI has the potential to satisfy a significant amount of the agricultural water demand at a national scale, presuming responsible reuse: safe applications for humans and environment and no limiting effects on water availability for other actors.

14.
J Environ Manage ; 280: 111692, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33293165

RESUMO

With the Green Deal the EU aims to achieve a circular economy, restore biodiversity and reduce environmental pollution. As a part of the Green Deal a 'one-substance one-assessment' (OS-OA) approach for chemicals has been proposed. The registration and risk assessment of chemicals on the European market is currently fragmented across different legal frameworks, dependent on the chemical's use. In this review, we analysed the five main European chemical registration frameworks and their risk assessment procedures for the freshwater environment, covering 1) medicines for human use, 2) veterinary medicines, 3) pesticides, 4) biocides and 5) industrial chemicals. Overall, the function of the current frameworks is similar, but important differences exist between the frameworks' environmental protection goals and risk assessment strategies. These differences result in inconsistent assessment outcomes for similar chemicals. Chemicals are also registered under multiple frameworks due to their multiple uses, and chemicals which are not approved under one framework are in some instances allowed on the market under other frameworks. In contrast, an OS-OA will require a uniform hazard assessment between all different frameworks. In addition, we show that across frameworks the industrial chemicals are the least hazardous for the freshwater environment (median PNEC of 2.60E-2 mg/L), whilst biocides are the most toxic following current regulatory assessment schemes (median PNEC of 1.82E-4 mg/L). Finally, in order to facilitate a successful move towards a OS-OA approach we recommend a) harmonisation of environmental protection goals and risk assessment strategies, b) that emission, use and production data should be made publicly available and that data sharing becomes a priority, and c) an alignment of the criteria used to classify problematic substances.


Assuntos
Poluição Ambiental , Praguicidas , Biodiversidade , Conservação dos Recursos Naturais , Humanos , Praguicidas/análise , Medição de Risco
15.
Sci Rep ; 10(1): 19598, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177561

RESUMO

Delta systems are fundamental to the persistence of large human populations, food systems and ecosystem processes. Structural changes in natural and social components of deltas, emerging from past land-use changes, have led deltas to become locked-in loosing the ability to transform back into living deltas, and making them more at risk. We propose a framework to assess whether deltas become locked-in by changes in natural or social infrastructure, by examining the dynamic coupling between population and land-use development over 300 years for 48 deltas globally. We find that 46% of the deltas are defined as living, where population, irrigation, and cropland are correlated. Of the 54% locked-in deltas, 21% show changes in natural infrastructure to cropland (n = 6) or irrigation (n = 4), and 33% (n = 16) show changes in social infrastructure. Most locked-in deltas are in Europe but also in other continents due to decoupled development of population and cropland. While, locked-in deltas due to changes in natural infrastructure have highest average risks, those with changes in social infrastructure and the living deltas have highest risks from future relative sea level rise. These results show that deltas have varying natural and social components derived from a 300 years historical perspective, which are not taken into account in risk assessments for global deltas.

16.
Nat Commun ; 11(1): 4978, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-33020475

RESUMO

Tropical forests modify the conditions they depend on through feedbacks at different spatial scales. These feedbacks shape the hysteresis (history-dependence) of tropical forests, thus controlling their resilience to deforestation and response to climate change. Here, we determine the emergent hysteresis from local-scale tipping points and regional-scale forest-rainfall feedbacks across the tropics under the recent climate and a severe climate-change scenario. By integrating remote sensing, a global hydrological model, and detailed atmospheric moisture tracking simulations, we find that forest-rainfall feedback expands the geographic range of possible forest distributions, especially in the Amazon. The Amazon forest could partially recover from complete deforestation, but may lose that resilience later this century. The Congo forest currently lacks resilience, but is predicted to gain it under climate change, whereas forests in Australasia are resilient under both current and future climates. Our results show how tropical forests shape their own distributions and create the climatic conditions that enable them.


Assuntos
Florestas , Clima Tropical , África , Sudeste Asiático , Austrália , Mudança Climática , Conservação dos Recursos Naturais , Ecossistema , Retroalimentação , Chuva , América do Sul
18.
Sci Total Environ ; 725: 138233, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32278174

RESUMO

In the Netherlands it is common to nourish the coastline with sand from the seabed. Foredunes are replenished with sand from the beach and can be transported further into the dune area. We investigated whether nourishment material alters the phosphorus (P) content of dune soil and the nitrogen (N):P ratio of dune vegetation in two areas: a mega sand nourishment with fixed foredunes (SE) and a traditional sand nourishment with dynamic foredunes (NWC). Four zones were considered: beach (zone 1), frontal foredunes (zone 2), foredunes crest (zone 3) and inner dunes (zone 4). We estimated the characteristics of fine (< 250-µm) and coarse (250-2000 µm) sand. Total P, P speciation and available P of SE and NWC were similar until zone 4. Zone 1-3 consisted mainly of coarse sand, whereas the sand in zone 4 was finer with higher amounts at NWC. Iron (Fe) bound P was comparable for fine and coarse sand in zone 1-3, but high contents were present in zone 4. In zone 1-3, calcium (Ca) bound P was mainly found in the fine fraction, which was abundant in the coarse fraction of zone 4. After a period of 4 years, the effect of dynamic dunes on P fractions and dune plant species was not apparent yet, although inblowing sand mainly consisted of fine sand with high contents of Ca-bound P. This may change over time, especially in dynamic dunes with higher eolian activity of fine sand. Consequently, pH buffering of the soil may increase because of a higher Ca­carbonate content, which leads to decreased solubility of Ca-bound P and low P availability for the vegetation. Both low P availability and high buffering capacity are known environmental factors that facilitate endangered dune plant species.

19.
PLoS One ; 14(6): e0217710, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31170230

RESUMO

Railways are classic instances of complex socio-technical systems, whose defining characteristic is that they exist and function by integrating (continuous-time) interactions among technical components and human elements. Typically, unlike physical systems, there are no governing laws for describing their dynamics. Based purely on micro-unit data, here we present a data-driven framework to analyze macro-dynamics in such systems, leading us to the identification of specific states and prediction of transitions across them. It consists of three steps, which we elucidate using data from the Dutch railways. First, we form a dimensionally reduced phase-space by extracting a few relevant components, wherein relevance is proxied by dominance in terms of explained variance, as well as by persistence in time. Secondly, we apply a clustering algorithm to the reduced phase-space, resulting in the revelation of states of the system. Specifically, we identify 'rest' and 'disrupted' states, for which the system operations deviates respectively little and strongly from the planned timetable. Third, we define an early-warning metric based on the probability of transitions across states, predict whether the system is likely to transit from one state to another within a given time-frame and evaluate the performance of this metric using the Peirce skill score. Interestingly, using case studies, we demonstrate that the framework is able to predict large-scale disruptions up to 90 minutes beforehand with significant skill, demonstrating, for the railway companies, its potential to better track the evolution of large-scale disruptions in their networks. We discuss that the applicability of the three-step framework stretches to other systems as well-i.e., not only socio-technical ones-wherein real-time monitoring can help to prevent macro-scale state transitions, albeit the methods chosen to execute each step may depend on specific system-details.


Assuntos
Meios de Transporte , Geografia , Países Baixos , Análise de Componente Principal
20.
Environ Toxicol Chem ; 37(11): 2933-2946, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30178514

RESUMO

Artificial sand replenishments are globally used as innovative coastal protection measures. In these replenishments elevated porewater concentrations of trace elements are found. The present study investigated possible ecotoxicological risks at 2 intertidal depositional sites, the Sand Engine as a recent innovative Dutch coastal management project and a semiartificial tidal flat. Using the sediment quality triad approach, we considered 3 major lines of evidence: geochemical characterization, toxicity characterization using bioassays with the estuarine amphipod Corophium volutator, and ecological field survey. In both depositional areas C. volutator is at risk: moderate (Sand Engine) and low (tidal flat). For tidal flat, the bioavailability of trace elements differs between the field site and the laboratory. Contamination from arsenic and copper is present, but the low survival rate of C. volutator from the bioassay suggests the presence of additional contaminations. The highly morphological dynamic environment of Sand Engine creates a less favorable habitat for C. volutator, where local spots with stagnant water can temporarily create hypoxic conditions and sulfate becomes reduced. The dynamic system mobilizes especially arsenic, triggering adverse ecotoxic effects at low original sediment concentrations. To conclude, the sediment quality triad approach shows that a semiartificial tidal flat is preferred over a highly dynamic coastal management project like the Sand Engine. The Sand Engine concept does not provide suitable conditions for macrobenthos species like C. volutator; therefore, limiting the nature development goal set together with the coastal protection goal. Assessing each line of evidence from the approach together with additional measurements established more precise and realistic conclusions, showing that evaluating the contributions of this method is necessary to understand the causes of risk in a site-specific manner. Environ Toxicol Chem 2018;37:2933-2946. © 2018 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Assuntos
Ecotoxicologia , Monitoramento Ambiental , Rios/química , Oligoelementos/análise , Poluentes Químicos da Água/análise , Anfípodes/efeitos dos fármacos , Animais , Bioensaio , Carbono/análise , Geografia , Sedimentos Geológicos/química , Concentração de Íons de Hidrogênio , Países Baixos , Oxirredução , Fatores de Risco , Água do Mar/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...