Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3028, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627402

RESUMO

Mixed-stack complexes which comprise columns of alternating donors and acceptors are organic conductors with typically poor electrical conductivity because they are either in a neutral or highly ionic state. This indicates that conductive carriers are insufficient or are mainly localized. In this study, mixed-stack complexes that uniquely exist at the neutral-ionic boundary were synthesized by combining donors (bis(3,4-ethylenedichalcogenothiophene)) and acceptors (fluorinated tetracyanoquinodimethanes) with similar energy levels and orbital symmetry between the highest occupied molecular orbital of the donor and the lowest unoccupied molecular orbital of the acceptor. Surprisingly, the orbitals were highly hybridized in the single-crystal complexes, enhancing the room-temperature conductivity (10-4-0.1 S cm-1) of mixed-stack complexes. Specifically, the maximum conductivity was the highest reported for single-crystal mixed-stack complexes under ambient pressures. The unique electronic structures at the neutral-ionic boundary exhibited structural perturbations between their electron-itinerant and localized states, causing abrupt temperature-dependent changes in their electrical, optical, dielectric, and magnetic properties.

2.
Inorg Chem ; 63(9): 4337-4343, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38365195

RESUMO

Bent ligands bridged by heteroatoms have drawn significant interest as supramolecular coordination architectures. Traditionally, divalent group 16 elements are preferred over trivalent group 15 elements because of the anticipated steric hindrance. In this study, we explore metal-organic frameworks (MOFs) based on dipyridinoarsoles (DPAs), 4,4'-bipyridines bridged with an arsenic atom. An MOF with methyl-substituted DPA collapsed upon solvent removal, whereas that with phenyl-substituted DPA demonstrated breathing behavior due to guest molecule adsorption/desorption. In contrast, MOFs using the phosphorus analogue dipyridinophosphole exhibit inferior adsorption and lack breathing behavior. This is the first study to investigate the interplay among substituents, bridging elements, and dynamic behavior in MOFs using bent group 15 ligands.

3.
Faraday Discuss ; 250(0): 348-360, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-37961785

RESUMO

Conductive polymers with highly conjugated systems, such as the doped poly(3,4-ethylenedioxythiophene) (PEDOT) family, are commonly used in organic electronics. However, their structural inhomogeneity with various chain lengths makes it difficult to control their conductivities and structural details. On the other hand, low-molecular-weight materials have well-defined structures but relatively narrow conjugate areas with a limited range of Coulomb repulsion between carriers (Ueff), which hamper the flexible control of conductivities. To bridge this gap, we developed oligomer-based conductors, which are intermediate materials between polymers and low-molecular-weight materials. Using a library of single-crystal charge-transfer salts of oligo(3,4-ethylenedioxythiophene) (oligoEDOT) analogs that model the doped PEDOT family, we have investigated the structure-determining factors affecting their conductivities, such as counter anion variations, lengths of oligomer donor, and band fillings. Through the screening study, we developed oligoEDOT analogs with tunable room temperature conductivities by several orders of magnitude, including a metallic state above room temperature. In this study, we consistently evaluated the electronic structural insights by first-principles calculations and revealed that Ueff is the dominant factor that determines the relationship between the structures and conductivities. The unique features of oligoEDOT conductor systems with widely variable Ueff can differentiate these systems from strongly electron-correlated systems.

4.
J Am Chem Soc ; 145(28): 15152-15161, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37395785

RESUMO

Modern organic conductors are typically low-molecular-weight or polymer-based materials. Low-molecular-weight materials can be characterized using crystallographic information, allowing structure-conductivity relationships to be established and conduction mechanisms to be understood. However, controlling their conductive properties through molecular structural modulation is often challenging because of their relatively narrow conjugate areas. In contrast, polymer-based materials have highly π-conjugated structures with wide molecular-weight distributions, and their structural inhomogeneity makes characterizing their structures difficult. Thus, we focused on the less-explored intermediate, i.e., single-molecular-weight oligomers that model doped poly(3,4-ethylenedioxythiophene) (PEDOT). The dimer and trimer models provided clear structures; however, the short oligomers led to much lower conductivities (<10-3 S cm-1) than that of doped PEDOT. Herein, we elongated the oligomer to a tetramer through geometrical tuning based on a mixed sequence. The "P-S-S-P" sequence (S: 3,4-ethylenedithiothiophene; P: 3,4-(2',2'-dimethypropylenedioxy)thiophene) with twisted S-S enhanced the solubility and chemical stability. The subsequent oxidation process planarized the oligomer and expanded the conjugate area. Interestingly, the sequence involving sterically bulky outer P units allowed the doped oligomer to form a pitched π-stack in the single-crystal form. This enabled the inclusion of excess counter anions, which modulated the band filling. The combined effects of conjugate area expansion and band-filling modulation significantly increased the room-temperature conductivity to 36 S cm-1. This is the highest value reported for a single-crystalline oligomer conductor. Furthermore, a metallic state was observed above room temperature in a single-crystalline oligoEDOT for the first time. This unique mixed-sequence strategy for oligomer-based conductors enabled the precise control of conductive properties.

5.
J Phys Chem Lett ; 14(14): 3461-3467, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37010941

RESUMO

Organic semiconductors are well-known to exhibit high charge carrier mobility based on their spread of the π-orbital. In particular, the π-orbital overlap between neighboring molecules significantly affects their charge carrier mobility. This study elucidated the direct effect of subtle differences in the π-orbital overlap on charge carrier mobility, by precisely controlling only molecular arrangements without any chemical modifications. We synthesized disulfonic acid composed of a [1]benzothieno[3,2-b][1]benzothiophene (BTBT) moiety, and prepared organic salts with four butylamine isomers. Regardless of the type of butylamine combined, electronic states of the constituent BTBT derivative were identical, and all BTBT arrangements were edge-to-face herringbone-type. However, depending on the difference of steric hindrance, center-to-center distances and dihedral angles between neighboring BTBT moieties slightly varied. Despite a similar arrangement, the photoconductivity of four organic salts differed by a factor of approximately two. Additionally, theoretical charge carrier mobilities from their crystal structures exhibited a strong correlation with their photoconductivity.

6.
Angew Chem Int Ed Engl ; 61(49): e202212872, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36250811

RESUMO

Utilizing molecular motion is essential for the use of anhydrous superprotonic molecular proton conductors (σ beyond 10-4  S cm-1 ) as electrolytes in hydrogen fuel cells. However, molecular motion contributing to the improvement of intrinsic proton conduction has been limited and little clarified in relation to the proton conduction mechanism, limiting the development of material design guidelines. Here, a salt with a three-dimensional (3D) hydrogen-bonded (H-bonded) phosphate network with imidazolium cations installed inside was studied, whose components are known to exhibit molecular motions that contribute to proton conduction. Despite its anisotropic H-bonded network, the salt exhibits isotropic anhydrous superprotonic conductivity exceeding 10-3  S cm-1 at ≈351 K, which is the first example for organic molecular crystal. Variable-temperature X-ray structural analysis and solid-state 2 H NMR measurements revealed significant 3D molecular motion of imidazolium cations, which accelerate proton conduction via the 3D H-bonded phosphate network.

7.
Phys Chem Chem Phys ; 24(16): 9130-9134, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35388378

RESUMO

The conjugation length is a unique structural factor for oligomer-based π-conjugated conductors as it modulates their electronic structures. Herein, we demonstrated the conjugation length effects on conductivity by comparing a dimer and trimer of single-crystalline oligo(3,4-ethylenedioxythiophene) radical cation salts. The dimer showed a uniform-stacked columnar structure, while the trimer showed stacked columns of the π-dimerized donor and weaker intracolumnar interactions. Nevertheless, the trimer exhibited higher conductivity, suggesting a considerable decrease in the on-site Coulomb repulsion energy of the conjugation-expanded system.

8.
Chem Commun (Camb) ; 58(38): 5668-5682, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35420071

RESUMO

Proton-electron-coupled reactions, specifically proton-coupled electron transfer (PCET), in biological and chemical processes have been extensively investigated for use in a wide variety of applications, including energy conversion and storage. However, the exploration of the functionalities of the conductivity, magnetism, and dielectrics by proton-electron coupling in molecular materials is challenging. Dynamic and static proton-electron-coupled functionalities are to be expected. This feature article highlights the recent progress in the development of functionalities of dynamic proton-electron coupling in molecular materials. Herein, single-unit conductivity by self-doping, quantum spin liquid state coupled with quantum fluctuation of protons, switching of conductivity and magnetism triggered by the disorder-order transition of deuterons, and their external responses under pressure and in the presence of an electric field are introduced. In addition, as for the functionalities of proton-d/π-electron coupling in metal dithiolene complexes, magnetic switching with multiple PCET and vapochromism induced by electron transfer through hydrogen-bond (H-bond) formation is introduced experimentally and theoretically. We also outlined the basic and applied issues and potential challenges for development of proton-electron-coupled molecular materials, functionalities, and devices.

9.
J Phys Chem Lett ; 12(22): 5390-5394, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34080418

RESUMO

Anhydrous organic crystalline materials incorporating imidazolium hydrogen succinate (Im-Suc), which exhibit high proton conduction even at temperatures above 100 °C, are attractive for elucidating proton conduction mechanisms toward the development of solid electrolytes for fuel cells. Herein, quantum chemical calculations were used to investigate the proton conduction mechanism in terms of hydrogen-bonding (H-bonding) changes and restricted molecular rotation in Im-Suc. The local H-bond structures for proton conduction were characterized by vibrational frequency analysis and compared with corresponding experimental data. The calculated potential energy surface involving proton transfer (PT) and imidazole (Im) rotational motion showed that PT between Im and succinic acid was a rate-limiting step for proton transport in Im-Suc and that proton conduction proceeded via the successive coupling of PT and Im rotational motion based on a Grotthuss-type mechanism. These findings provide molecular-level insights into proton conduction mechanisms for Im-based (or -incorporated) H-bonding organic proton conductors.

10.
Angew Chem Int Ed Engl ; 60(23): 12717-12722, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33713041

RESUMO

Ferroelectric spin crossover (SCO) behavior is demonstrated to occur in the cobalt(II) complex, [Co(FPh-terpy)2 ](BPh4 )2 ⋅3ac (1⋅3 ac; FPh-terpy=4'-((3-fluorophenyl)ethynyl)-2,2':6',2''-terpyridine) and is dependent on the degree of 180° flip-flop motion of the ligand's polar fluorophenyl ring. Single crystal X-ray structures at several temperatures confirmed the flip-flop motion of fluorobenzene ring and also gave evidence for the SCO behavior with the latter behavior also confirmed by magnetic susceptibility measurements. The molecular motion of the fluorobenzene ring was also revealed using solid-state 19 F NMR spectroscopy. Thus the SCO behavior is accompanied by the flip-flop motion of the fluorobenzene ring, leading to destabilization of the low spin cobalt(II) state; with the magnitude of rotation able to be controlled by an electric field. This first example of spin-state conversion being dependent on the molecular motion of a ligand-appended fluorobenzene ring in a SCO cobalt(II) compound provides new insight for the design of a new category of molecule-based magnetoelectric materials.

11.
Chemistry ; 27(22): 6597, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33656193

RESUMO

Invited for the cover of this issue is the group of Tomoko Fujino and Hatsumi Mori at the University of Tokyo. The image depicts the structural information of doped PEDOT uncovered by the single-crystalline EDOT dimer model. Read the full text of the article at .10.1002/chem.202005333.

12.
Chemistry ; 27(22): 6696-6700, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33427364

RESUMO

Although doped poly(3,4-ethylenedioxythiophene) (PEDOT) is extensively used in electronic devices, their molecular-weight distributions and inadequately defined structures have hindered the elucidation of their underlying conduction mechanism. In this study, we introduce the simplest discrete oligomer models: EDOT dimer radical cation salts. Single-crystal structural analyses revealed their one-dimensional (1D) columnar structures, in which the donors were uniformly stacked. Band calculations identified 1D metallic band structures with a strong intracolumnar orbital interaction (band width W≈1 eV), implying the origin of the high conductivity of doped PEDOT. Interestingly, the salts exhibited semiconducting behavior reminiscent of genuine Mott states as a result of electron-electron repulsion (U) dominant over W. This study realized basic models with tunable W and U to understand the conduction mechanism of doped PEDOT through structural modification in oligomers, including the conjugation length.

13.
Nat Commun ; 11(1): 843, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32071299

RESUMO

Water confined within one-dimensional (1D) hydrophobic nanochannels has attracted significant interest due to its unusual structure and dynamic properties. As a representative system, water-filled carbon nanotubes (CNTs) are generally studied, but direct observation of the crystal structure and proton transport is difficult for CNTs due to their poor crystallinity and high electron conduction. Here, we report the direct observation of a unique water-cluster structure and high proton conduction realized in a metal-organic nanotube, [Pt(dach)(bpy)Br]4(SO4)4·32H2O (dach: (1R, 2R)-(-)-1,2-diaminocyclohexane; bpy: 4,4'-bipyridine). In the crystalline state, a hydrogen-bonded ice nanotube composed of water tetramers and octamers is found within the hydrophobic nanochannel. Single-crystal impedance measurements along the channel direction reveal a high proton conduction of 10-2 Scm-1. Moreover, fast proton diffusion and continuous liquid-to-solid transition are confirmed using solid-state 1H-NMR measurements. Our study provides valuable insight into the structural and dynamical properties of confined water within 1D hydrophobic nanochannels.

14.
Chemphyschem ; 20(10): 1158-1176, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-30887646

RESUMO

One of the key issues for an upcoming hydrogen energy-based society is to develop highly efficient hydrogen-storage materials. Among the many hydrogen-storage materials reported, transition-metal hydrides can reversibly absorb and desorb hydrogen, and have thus attracted much interest from fundamental science to applications. In particular, the Pd-H system is a simple and classical metal-hydrogen system, providing a platform suitable for a thorough understanding of ways of controlling the hydrogen-storage properties of materials. By contrast, metal nanoparticles have been recently studied for hydrogen storage because of their unique properties and the degrees of freedom which cannot be observed in bulk, i. e., the size, shape, alloying, and surface coating. In this review, we overview the effects of such degrees of freedom on the hydrogen-storage properties of Pd-related nanomaterials, based on the fundamental science of bulk Pd-H. We shall show that sufficiently understanding the nature of the interaction between hydrogen and host materials enables us to control the hydrogen-storage properties though the electronic-structure control of materials.

15.
ACS Appl Mater Interfaces ; 11(13): 12639-12646, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30839184

RESUMO

We report a hybrid solid system, UMOM-100-a and UMOM-100-b, synthesized by incorporation of Cu-based metal-organic polyhedra (MOPs) into a porous metal-organic framework (MOF) host, PCN-777. The MOP guests have acid (SO3-) functional groups, acting as functionalized nanocages, whereas the porosity is still maintained for proton conductivity. The key parameter for the UMOM-100 series is the number of MOPs inside a MOF, which controls the ratio between meso- and micropores, polarity, and finally proton conductivity. This is an example demonstrating a new design strategy for porous solids to add active components into porous MOFs, opening up possibilities in other applications such as solid-state electrolytes and heterogeneous catalysts.

16.
RSC Adv ; 9(37): 21311-21317, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35521352

RESUMO

We investigated the relationship between crystalline disorder and electronic structure deviations of Pd nanoparticles (NPs) and their hydrogen storage properties as a function of their particle diameter (2.0, 4.6 and 7.6 nm) using various synchrotron techniques. The lattice constant of the 2.0 nm-diameter Pd NPs was observed to be larger than that of the 4.6 or 7.6 nm-diameter Pd NPs. With increasing particle diameter the structural ordering was improved, the lattice constant and atomic displacement were reduced and the coordination numbers increased, as determined using high-energy X-ray diffraction, reverse Monte Carlo modelling and X-ray absorption fine structure spectroscopy. The structural order of the core part of the larger NPs was also better than that of the smaller NPs. In addition, the bond strength of the Pd-H formation increased with increasing particle diameter. Finally, the surface order of the Pd NPs was related to enhancement of the hydrogen storage capacity and Pd-H bond strength.

17.
Angew Chem Int Ed Engl ; 57(31): 9823-9827, 2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-29896769

RESUMO

The palladium-hydrogen system is one of the most famous hydrogen-storage systems. Although there has been much research on ß-phase PdH(D)x , we comprehensively investigated the nature of the interaction between Pd and H(D) in α-phase PdH(D)x (x<0.03 at 303 K), and revealed the existence of Pd-H(D) chemical bond for the first time, by various in situ experimental techniques and first-principles theoretical calculations. The lattice expansion, magnetic susceptibility, and electrical resistivity all provide evidence. In situ solid-state 1 H and 2 H NMR spectroscopy and first-principles theoretical calculations revealed that a Pd-H(D) chemical bond exists in the α phase, but the bonding character of the Pd-H(D) bond in the α phase is quite different from that in the ß phase; the nature of the Pd-H(D) bond in the α phase is a localized covalent bond whereas that in the ß phase is a metallic bond.

18.
J Am Chem Soc ; 140(1): 291-297, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29200273

RESUMO

The synthesis of a new ionic plastic crystal, tetraethylammonium-d20 d-10-camphorsulfonate, is reported. The crystal has three solid phases, the structures of which were determined by single-crystal X-ray diffraction (XRD). XRD analysis revealed a phase transition from nonpolar space group P21212 to polar space group P21 with increasing temperature. The dynamics of the d-10-camphorsulfonate anion and the tetraethylammonium-d20 cation was investigated by variable-temperature 1H and 2H solid-state NMR spectroscopy. The anion showed swing motion in high-temperature phases, which is in good agreement with the disorder observed in XRD analysis. The cation showed uniaxial rotation even in the low-temperature phase. The rotation axis of the tetrahedral structure showed a transition from the two-fold axis to the three-fold axis with the phase transition.

19.
J Am Chem Soc ; 137(35): 11498-506, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26302312

RESUMO

Understanding the role that crystal imperfections or defects play on the physical properties of a solid material is important for any application. In this report, the highly unique crystal structure of the metal-organic framework (MOF) zirconium 2-sulfoterephthalate is presented. This MOF contains a large number of partially occupied ligand and metal cluster sites which directly affect the physical properties of the material. The partially occupied ligand positions give rise to a continuum of pore sizes within this highly porous MOF, supported by N2 gas sorption and micropore analysis. Furthermore, this MOF is lined with sulfonic acid groups, implying a high proton concentration in the pore, but defective zirconium clusters are found to be effective proton trapping sites, which was investigated by a combination of AC impedance analysis to measure the proton conductivity and DFT calculations to determine the solvation energies of the protons in the pore. Based on the calculations, methods to control the pKa of the clusters and improve the conductivity by saturating the zirconium clusters with strong acids were utilized, and a 5-fold increase in proton conductivity was achieved using these methods. High proton conductivity of 5.62 × 10(-3) S cm(-1) at 95% relative humidity and 65 °C could be achieved, with little change down to 40% relative humidity at room temperature.

20.
J Am Chem Soc ; 136(29): 10222-5, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-25019951

RESUMO

Pd octahedrons and cubes enclosed by {111} and {100} facets, respectively, have been synthesized for investigation of the shape effect on hydrogen-absorption properties. Hydrogen-storage properties were investigated using in situ powder X-ray diffraction, in situ solid-state (2)H NMR and hydrogen pressure-composition isotherm measurements. With these measurements, it was found that the exposed facets do not affect hydrogen-storage capacity; however, they significantly affect the absorption speed, with octahedral nanocrystals showing the faster response. The heat of adsorption of hydrogen and the hydrogen diffusion pathway were suggested to be dominant factors for hydrogen-absorption speed. Furthermore, in situ solid-state (2)H NMR detected for the first time the state of (2)H in a solid-solution (Pd + H) phase of Pd nanocrystals at rt.


Assuntos
Hidrogênio/química , Nanopartículas Metálicas/química , Paládio/química , Absorção Fisico-Química , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Transmissão , Conformação Molecular , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...