Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Peptides ; 64: 34-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25554217

RESUMO

Mechanisms of vascular complications in type-2 diabetes patients and animal models are matter of debate. We previously demonstrated that a double-stress model applied to male mice during nursing period produces enduring hyperfunction of endogenous opioid and adrenocorticotropin (ACTH)-corticosteroid systems, accompanied by type-2 diabetes-like alterations in adult animals. Administration of the opioid receptor antagonist naloxone, or of an antisense oligodeoxynucleotide versus proopiomelanocortin mRNA, capable to block the pro-opiomelanocortin-derived peptides ß-endorphin and ACTH, selectively prevent these alterations. Here, we investigated alterations produced by our stress model on aorta endothelium-dependent relaxation and contractile responses. Mice, stressed during nursing period, showed in the adulthood hormonal and metabolic type-2 diabetes-like alterations, including hyperglycemia, increased body weight and increased plasma ACTH and corticosterone levels. Ex vivo isolated aorta rings, gathered from stressed mice, were less sensitive to noradrenaline-induced contractions versus controls. This effect was blocked by nitric-oxide synthase-inhibitor l-N(G)-nitroarginine added to bath organ solution. Aorta rings relaxation caused by acetylcholine was enhanced in stressed mice versus controls, but following treatment with the nitric-oxide donor sodium nitroprusside, concentration-relaxation curves in aorta from stressed groups were similar to controls. Therefore, vascular response alterations to physiologic-pharmacologic stimuli were apparently due to nitric-oxide hyperfunction-dependent mechanisms. Aorta functional alterations, and plasma stress hormones enhancement, were prevented in mice stressed and treated with antisense oligodeoxinucleotide, addressed to reduce ACTH- and corticosteroid-mediated hyperfunction. This study demonstrates the key role of ACTH-corticosteroid axis hyperfunction for the triggering of vascular conditions in male adult rodents following postnatal stress in a type-2 diabetes model.


Assuntos
Elementos Antissenso (Genética)/farmacologia , Aorta/fisiopatologia , Diabetes Mellitus Tipo 2/fisiopatologia , Pró-Opiomelanocortina/antagonistas & inibidores , Estresse Fisiológico/fisiologia , Animais , Animais Recém-Nascidos , Aorta/efeitos dos fármacos , Modelos Animais de Doenças , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiopatologia , Masculino , Camundongos , Pró-Opiomelanocortina/genética , Vasoconstrição/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
2.
Eur J Pharmacol ; 484(2-3): 277-85, 2004 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-14744614

RESUMO

To further investigate the mechanisms which regulate sympathetic vascular tone, we studied the effects of the sarcoplasmic reticulum Ca(2+)-ATPase inhibitor, thapsigargin, on the vasoconstriction induced by transmural nerve stimulation and noradrenaline in superfused human saphenous vein rings. The contractions induced by both transmural nerve stimulation and noradrenaline were potentiated by thapsigargin in endothelium-intact, but not in endothelium-denuded vessels. This potentiation was unaffected by the non-selective endothelin ET(A/B) receptor antagonist, Ro 47-0203 (4-tert-Butyyl-N-[6-(2-hydroxy-ethoxy)-5-(2-methoxy-phenoxy)-2,2'-bipyrimidin-4yl]benzene sulfonamide), or by the nitric oxide (NO) synthase inhibitor, L-NNA (N(omega)-nitro-L-arginine), but was inhibited by the thromboxane A(2) receptor antagonist, Bay u3405 (3(R)-[[(4-flurophenyl) sulphonyl]amino-1,2,3,4-tetrahydro-9H-carbazole-9-propanoic acid]) or by the thromboxane A(2) synthase inhibitor, UK 38485 (3-(1H-imidazol-1-yl-methyl)-2-methyl-1H-indole-1-propanoic acid). Moreover, the thapsigargin-induced noradrenergic hyperresponsiveness, as well as that produced by subthreshold concentrations of the thromboxane A(2) mimetic, U 46619, were blocked by the Ca(2+) channel antagonist, verapamil. In conclusion, our results indicate that thapsigargin enhances the contractions produced by sympathetic nerve stimulation in human saphenous vein rings through the endothelial release of thromboxane A(2) that potentiates the vasoconstriction induced by the noradrenergic mediator with a verapamil-sensitive mechanism.


Assuntos
Cálcio/fisiologia , Endotélio Vascular/fisiologia , Veia Safena/fisiologia , Tapsigargina/farmacologia , Tromboxano A2/fisiologia , Vasoconstrição/fisiologia , Análise de Variância , Relação Dose-Resposta a Droga , Endotélio Vascular/efeitos dos fármacos , Humanos , Técnicas In Vitro , Norepinefrina/farmacologia , Veia Safena/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA