Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 15(11): e0009991, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34843467

RESUMO

Soil transmitted helminths (STHs) are major human pathogens that infect over a billion people. Resistance to current anthelmintics is rising and new drugs are needed. Here we combine multiple approaches to find druggable targets in the anaerobic metabolic pathways STHs need to survive in their mammalian host. These require rhodoquinone (RQ), an electron carrier used by STHs and not their hosts. We identified 25 genes predicted to act in RQ-dependent metabolism including sensing hypoxia and RQ synthesis and found 9 are required. Since all 9 have mammalian orthologues, we used comparative genomics and structural modeling to identify those with active sites that differ between host and parasite. Together, we found 4 genes that are required for RQ-dependent metabolism and have different active sites. Finding these high confidence targets can open up in silico screens to identify species selective inhibitors of these enzymes as new anthelmintics.


Assuntos
Anti-Helmínticos/farmacologia , Proteínas de Helminto/química , Proteínas de Helminto/metabolismo , Helmintos/enzimologia , Ubiquinona/análogos & derivados , Animais , Domínio Catalítico , Simulação por Computador , Helmintíase/parasitologia , Helmintos/química , Helmintos/efeitos dos fármacos , Helmintos/metabolismo , Humanos , Ubiquinona/química , Ubiquinona/metabolismo
2.
Elife ; 82019 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-31232688

RESUMO

Parasitic helminths infect over a billion humans. To survive in the low oxygen environment of their hosts, these parasites use unusual anaerobic metabolism - this requires rhodoquinone (RQ), an electron carrier that is made by very few animal species. Crucially RQ is not made or used by any parasitic hosts and RQ synthesis is thus an ideal target for anthelmintics. However, little is known about how RQ is made and no drugs are known to block RQ synthesis. C. elegans makes RQ and can use RQ-dependent metabolic pathways - here, we use C. elegans genetics to show that tryptophan degradation via the kynurenine pathway is required to generate the key amine-containing precursors for RQ synthesis. We show that C. elegans requires RQ for survival in hypoxic conditions and, finally, we establish a high throughput assay for drugs that block RQ-dependent metabolism. This may drive the development of a new class of anthelmintic drugs. This study is a key first step in understanding how RQ is made in parasitic helminths.


Assuntos
Caenorhabditis elegans/metabolismo , Cinurenina/metabolismo , Redes e Vias Metabólicas/genética , Ubiquinona/análogos & derivados , Anaerobiose , Animais , Caenorhabditis elegans/genética , Hipóxia , Análise de Sobrevida , Ubiquinona/biossíntese
3.
G3 (Bethesda) ; 8(9): 2941-2952, 2018 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-30061375

RESUMO

Many drugs act very rapidly - they can turn on or off their targets within minutes in a whole animal. What are the acute effects of drug treatment and how does an animal respond to these? We developed a simple assay to measure the acute effects of drugs on C. elegans movement and examined the effects of a range of compounds including neuroactive drugs, toxins, environmental stresses and novel compounds on worm movement over a time period of 3 hr. We found a wide variety of acute responses. Many compounds cause rapid paralysis which may be permanent or followed by one or more recovery phases. The recoveries are not the result of some generic stress response but are specific to the drug e.g., recovery from paralysis due to a neuroactive drug requires neurotransmitter pathways whereas recovery from a metabolic inhibitor requires metabolic changes. Finally, we also find that acute responses can vary greatly across development and that there is extensive natural variation in acute responses. In summary, acute responses are sensitive probes of the ability of biological networks to respond to drug treatment and these responses can reveal the action of unexplored pathways.


Assuntos
Caenorhabditis elegans/metabolismo , Locomoção/efeitos dos fármacos , Neurotoxinas/toxicidade , Paralisia , Transmissão Sináptica/efeitos dos fármacos , Animais , Avaliação Pré-Clínica de Medicamentos/métodos , Paralisia/induzido quimicamente , Paralisia/metabolismo , Paralisia/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...