Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Food ; 4(10): 874-885, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37749393

RESUMO

Fishing for subsistence constitutes a livelihood safety net for poverty, malnutrition and gender inequality for populations dependent upon aquatic foods around the world. Here we provide global estimates showing that almost the same amount of small-scale fishers engage in subsistence fishing at some point during the year as in commercial employment and use subsistence estimates to measure small-scale fisheries' livelihood safety net function. In 2016, we estimate that 52.8 million people were engaged in subsistence fishing at some point during the year, while another 60.2 million people were commercially employed (90% of global fisheries employment). From 14 country case studies, it was possible to estimate that the subsistence catch provided an average apparent intake of six nutrients critical for positive health outcomes, equivalent to 26% of the recommended daily nutrient intake for 112.5 million people, higher than the national average contribution of beef or poultry.

2.
Glob Chang Biol ; 28(22): 6509-6523, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36069207

RESUMO

Human exploitation of wildlife for food, medicine, curios, aphrodisiacs, and spiritual artifacts represents a mounting 21st-century conservation challenge. Here, we provide the first global assessment of illegal marine turtle exploitation across multiple spatial scales (i.e., Regional Management Units [RMUs] and countries) by collating data from peer-reviewed studies, grey literature, archived media reports, and online questionnaires of in-country experts spanning the past three decades. Based on available information, we estimate that over 1.1 million marine turtles were exploited between 1990 and 2020 against existing laws prohibiting their use in 65 countries or territories and in 44 of the world's 58 marine turtle RMUs, with over 44,000 turtles exploited annually over the past decade. Exploitation across the 30-year period primarily consisted of green (56%) and hawksbill (39%) turtles when identified by species, with hawksbills (67%) and greens (81%) comprising the majority of turtles exploited in the 1990s and 2000s, respectively, and both species accounting for similar levels of exploitation in the 2010s. Although there were no clear overarching trends in the magnitude or spatial patterns of exploitation across the three decades, there was a 28% decrease in reported exploitation from the 2000s to the 2010s. The 10 RMUs with the highest exploitation in the 2010s included seven green and three hawksbill turtle RMUs, with most reported exploitation occurring in RMUs that typically exhibit a low risk of population decline or loss of genetic diversity. Over the past decade, the number of RMUs with "moderate" or "high" exploitation impact scores decreased. Our assessment suggests that illegal exploitation appears to have declined over the past decade and, with some exceptions, is primarily occurring in large, stable, and genetically diverse marine turtle populations.


Assuntos
Afrodisíacos , Tartarugas , Animais , Animais Selvagens , Conservação dos Recursos Naturais , Humanos
3.
Glob Chang Biol ; 24(2): e671-e691, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29274104

RESUMO

Marine reserves are widely used to protect species important for conservation and fisheries and to help maintain ecological processes that sustain their populations, including recruitment and dispersal. Achieving these goals requires well-connected networks of marine reserves that maximize larval connectivity, thus allowing exchanges between populations and recolonization after local disturbances. However, global warming can disrupt connectivity by shortening potential dispersal pathways through changes in larval physiology. These changes can compromise the performance of marine reserve networks, thus requiring adjusting their design to account for ocean warming. To date, empirical approaches to marine prioritization have not considered larval connectivity as affected by global warming. Here, we develop a framework for designing marine reserve networks that integrates graph theory and changes in larval connectivity due to potential reductions in planktonic larval duration (PLD) associated with ocean warming, given current socioeconomic constraints. Using the Gulf of California as case study, we assess the benefits and costs of adjusting networks to account for connectivity, with and without ocean warming. We compare reserve networks designed to achieve representation of species and ecosystems with networks designed to also maximize connectivity under current and future ocean-warming scenarios. Our results indicate that current larval connectivity could be reduced significantly under ocean warming because of shortened PLDs. Given the potential changes in connectivity, we show that our graph-theoretical approach based on centrality (eigenvector and distance-weighted fragmentation) of habitat patches can help design better-connected marine reserve networks for the future with equivalent costs. We found that maintaining dispersal connectivity incidentally through representation-only reserve design is unlikely, particularly in regions with strong asymmetric patterns of dispersal connectivity. Our results support previous studies suggesting that, given potential reductions in PLD due to ocean warming, future marine reserve networks would require more and/or larger reserves in closer proximity to maintain larval connectivity.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Aquecimento Global , Modelos Biológicos , Distribuição Animal , Animais , California , Pesqueiros , Peixes , Larva/fisiologia , Plâncton/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...