Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cells ; 8(5)2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31117301

RESUMO

BACKGROUND: The selection of assays suitable for testing the potency of clinical grade multipotent mesenchymal stromal cell (MSC)-based products and its interpretation is a challenge for both developers and regulators. Here, we present a bioprocess design for the production of Wharton's jelly (WJ)-derived MSCs and a validated immunopotency assay approved by the competent regulatory authority for batch release together with the study of failure modes in the bioprocess with potential impact on critical quality attributes (CQA) of the final product. Methods: The lymphocyte proliferation assay was used for determining the immunopotency of WJ-MSCs and validated under good manufacturing practices (GMP). Moreover, failure mode effects analysis (FMEA) was used to identify and quantify the potential impact of different unexpected situations on the CQA. Results: A production process based on a two-tiered cell banking strategy resulted in batches with sufficient numbers of cells for clinical use in compliance with approved specifications including MSC identity (expressing CD73, CD90, CD105, but not CD31, CD45, or HLA-DR). Remarkably, all batches showed high capacity to inhibit the proliferation of activated lymphocytes. Moreover, implementation of risk management tools led to an in-depth understanding of the manufacturing process as well as the identification of weak points to be reinforced. Conclusions: The bioprocess design showed here together with detailed risk management and the use of a robust method for immunomodulation potency testing allowed for the robust production of clinical-grade WJ-MSCs under pharmaceutical standards.


Assuntos
Técnicas de Cultura de Células/métodos , Imunomodulação/fisiologia , Células-Tronco Mesenquimais/imunologia , Cordão Umbilical/citologia , Geleia de Wharton/imunologia , Proliferação de Células , Sobrevivência Celular , Terapia Baseada em Transplante de Células e Tecidos , Células Cultivadas , Humanos , Cariótipo , Fenótipo , Medição de Risco
2.
J Transl Med ; 16(1): 291, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30355298

RESUMO

BACKGROUND: Successful delivery of cell-based therapeutics into patients is compromised by their short shelf-life upon release from production facilities due to the living nature of the active component that rapidly loses viability, and therefore its properties. In this context, the use of appropriate additives may contribute to the stabilisation of the cellular component within specifications for a longer time until administration. RESULTS: In the present study, we evaluated the effect of different formulations on the stability of viability, identity, and potency of clinical grade multipotent mesenchymal stromal cells in suspension, both electrolyte solution and protein content were found to impact on their shelf-life. Particularly cryopreservation of cells in a Plasmalyte 148 supplemented with 2% (w/v) AlbIX (a yeast-derived recombinant albumin) and 10% (v/v) dimethyl sulfoxide, and final formulation post-thawing in Plasmalyte 148 supplemented with 2% (w/v) AlbIX enabling prolonged stability from 24 h up to 72 h in optimal conditions. Further investigation on the mechanisms of action involved revealed a delay of apoptosis progression into late stage when AlbIX was present. CONCLUSIONS: The use of optimal formulations for each cell type of interest is crucial to extend the shelf life of cell-based pharmaceuticals and contribute to solve logistical challenges. We demonstrated that the use of Plasmalyte 148 supplemented with 2% (w/v) AlbIX resulted in superior stability of multipotent mesenchymal stromal cells without affecting their identity and multipotency.


Assuntos
Células-Tronco Mesenquimais/citologia , Células-Tronco Multipotentes/citologia , Apoptose/efeitos dos fármacos , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Criopreservação , Crioprotetores/farmacologia , Eletrólitos , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Multipotentes/metabolismo , Fenótipo , Albumina Sérica Humana/metabolismo , Soluções , Células Estromais/citologia
3.
Cytotherapy ; 19(9): 1060-1069, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28734679

RESUMO

BACKGROUND AIMS: Biodistribution of candidate cell-based therapeutics is a critical safety concern that must be addressed in the preclinical development program. We aimed to design a decision tree based on a series of studies included in actual dossiers approved by competent regulatory authorities, noting that the design, execution and interpretation of pharmacokinetics studies using this type of therapy is not straightforward and presents a challenge for both developers and regulators. METHODS: Eight studies were evaluated for the definition of a decision tree, in which mesenchymal stromal cells (MSCs) were administered to mouse, rat and sheep models using diverse routes (local or systemic), cell labeling (chemical or genetic) and detection methodologies (polymerase chain reaction [PCR], immunohistochemistry [IHC], fluorescence bioimaging, and magnetic resonance imaging [MRI]). Moreover, labeling and detection methodologies were compared in terms of cost, throughput, speed, sensitivity and specificity. RESULTS: A decision tree was defined based on the model chosen: (i) small immunodeficient animals receiving heterologous MSC products for assessing biodistribution and other safety aspects and (ii) large animals receiving homologous labeled products; this contributed to gathering data not only on biodistribution but also on pharmacodynamics. PCR emerged as the most convenient technique despite the loss of spatial information on cell distribution that can be further assessed by IHC. DISCUSSION: This work contributes to the standardization in the design of biodistribution studies by improving methods for accurate assessment of safety. The evaluation of different animal models and screening of target organs through a combination of techniques is a cost-effective and timely strategy.


Assuntos
Algoritmos , Técnicas de Apoio para a Decisão , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Animais , Humanos , Imuno-Histoquímica/métodos , Imageamento por Ressonância Magnética , Células-Tronco Mesenquimais/fisiologia , Camundongos , Reação em Cadeia da Polimerase/métodos , Ratos , Projetos de Pesquisa , Ovinos
4.
Regen Med ; 11(6): 521-8, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27513321

RESUMO

AIM: Computerized systems (CS) are essential in the development and manufacture of cell-based medicines and must comply with good manufacturing practice, thus pushing academic developers to implement methods that are typically found within pharmaceutical industry environments. MATERIALS & METHODS: Qualitative and quantitative risk analyses were performed by Ishikawa and Failure Mode and Effects Analysis, respectively. RESULTS: A process for qualification of a CS that keeps track of environmental conditions was designed and executed. The simplicity of the Ishikawa analysis permitted to identify critical parameters that were subsequently quantified by Failure Mode Effects Analysis, resulting in a list of test included in the qualification protocols. CONCLUSION: The approach presented here contributes to simplify and streamline the qualification of CS in compliance with pharmaceutical quality standards.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/normas , Computadores , Indústria Farmacêutica/normas , Medicina Regenerativa/normas , Gestão da Qualidade Total , Comércio , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...