Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38931712

RESUMO

An optical-chemical sensor based on two modified plastic optical fibers (POFs) and a molecularly imprinted polymer (MIP) is realized and tested for the detection of 2-furaldehyde (2-FAL). The 2-FAL measurement is a scientific topic of great interest in different application fields, such as human health and life status monitoring in power transformers. The proposed sensor is realized by using two POFs as segmented waveguides (SW) coupled through a micro-trench milled between the fibers and then filled with a specific MIP for the 2-FAL detection. The experimental results show that the developed intensity-based sensor system is highly selective and sensitive to 2-FAL detection in aqueous solutions, with a limit of detection of about 0.04 mg L-1. The proposed sensing approach is simple and low-cost, and it shows performance comparable to that of plasmonic MIP-based sensors present in the literature for 2-FAL detection.

2.
Biomed Opt Express ; 15(3): 1976-1994, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38495717

RESUMO

In this work, a 3D-printed plasmonic chip based on a silver-gold bilayer was developed in order to enhance the optical response of the surface plasmon resonance (SPR) probe. More specifically, numerical and experimental results were obtained on the 3D-printed SPR platform based on a silver-gold bilayer. Then, the optimized probe's gold plasmonic interface was functionalized with a specific antibody directed against the p27Kip1 protein (p27), an important cell cycle regulator. The 3D-printed plasmonic biosensor was tested for p27 detection with good selectivity and a detection limit of 55 pM. The biosensor system demonstrated performance similar to commercially available ELISA (enzyme-linked immunoassay) kits, with several advantages, such as a wide detection range and a modular and simple-based architecture. The proposed biosensing technology offers flexible deployment options that are useful in disposable, low-cost, small-size, and simple-to-use biochips, envisaging future applications in experimental and biomedical research.

3.
Nanomaterials (Basel) ; 13(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37630947

RESUMO

In this work, two different lossy mode resonance (LMR) platforms based on plastic optical fibers (POFs) are developed and tested in a biochemical sensing scenario. The LMR platforms are based on the combination of two metal oxides (MOs), i.e., zirconium oxide (ZrO2) and titanium oxide (TiO2), and deposited on the exposed core of D-shaped POF chips. More specifically, two experimental sensor configurations were obtained by swapping the mutual position of the Mos films over to the core of the D-shaped POF probe. The POF-LMR sensors were first characterized as refractometers, proving the bulk sensitivities. Then, both the POF-LMR platforms were functionalized using molecularly imprinted nanoparticles (nanoMIPs) specific for human transferrin (HTR) in order to carry out binding tests. The achieved results report a bulk sensitivity equal to about 148 nm/RIU in the best sensor configuration, namely the POF-TiO2-ZrO2. In contrast, both optical configurations combined with nanoMIPs showed an ultra-low detection limit (fM), demonstrating excellent efficiency of the used receptor (nanoMIPs) and paving the way to disposable POF-LMR biochemical sensors that are easy-to-use, low-cost, and highly sensitive.

4.
Sci Rep ; 13(1): 11210, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37433901

RESUMO

The simultaneous interrogation of both lossy mode (LMR) and surface plasmon (SPR) resonances was herein exploited for the first time to devise a sensor in combination with soft molecularly imprinting of nanoparticles (nanoMIPs), specifically entailed of the selectivity towards the protein biomarker human serum transferrin (HTR). Two distinct metal-oxide bilayers, i.e. TiO2-ZrO2 and ZrO2-TiO2, were used in the SPR-LMR sensing platforms. The responses to binding of the target protein HTR of both sensing configurations (TiO2-ZrO2-Au-nanoMIPs, ZrO2-TiO2-Au-nanoMIPs) showed femtomolar HTR detection, LODs of tens of fM and KDapp ~ 30 fM. Selectivity for HTR was demonstrated. The SPR interrogation was more efficient for the ZrO2-TiO2-Au-nanoMIPs configuration (sensitivity at low concentrations, S = 0.108 nm/fM) than for the TiO2-ZrO2-Au-nanoMIPs one (S = 0.061 nm/fM); while LMR was more efficient for TiO2-ZrO2-Au-nanoMIPs (S = 0.396 nm/fM) than for ZrO2-TiO2-Au-nanoMIPs (S = 0.177 nm/fM). The simultaneous resonance monitoring is advantageous for point of care determinations, both in terms of measurement's redundancy, that enables the cross-control of the measure and the optimization of the detection, by exploiting the individual characteristics of each resonance.


Assuntos
Nanopartículas , Transferrina , Humanos , Ressonância de Plasmônio de Superfície , Proteínas Sanguíneas
5.
Sensors (Basel) ; 23(12)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37420827

RESUMO

In recent decades, the Surface Plasmon Resonance (SPR) phenomenon has been utilized as an underlying technique in a broad range of application fields. Herein, a new measuring strategy which harnesses the SPR technique in a way that is different from the classical methodology was explored by taking advantage of the characteristics of multimode waveguides, such as plastic optical fibers (POFs) or hetero-core fibers. The sensor systems based on this innovative sensing approach were designed, fabricated, and investigated to assess their ability to measure various physical features, such as magnetic field, temperature, force, and volume, and to realize chemical sensors. In more detail, a sensitive patch of fiber was used in series with a multimodal waveguide where the SPR took place, to alter the mode profile of the light at the input of the waveguide itself. In fact, when the changes of the physical feature of interest acted on the sensitive patch, a variation of the incident angles of the light launched in the multimodal waveguide occurred, and, as a consequence, a shift in resonance wavelength took place. The proposed approach permitted the separation of the measurand interaction zone and the SPR zone. This meant that the SPR zone could be realized only with a buffer layer and a metallic film, thus optimizing the total thickness of the layers for the best sensitivity, regardless of the measurand type. The proposed review aims to summarize the capabilities of this innovative sensing approach to realize several types of sensors for different application fields, showing the high performances obtained by exploiting a simple production process and an easy experimental setup.


Assuntos
Fibras Ópticas , Ressonância de Plasmônio de Superfície , Desenho de Equipamento , Ressonância de Plasmônio de Superfície/métodos , Plásticos
6.
Sensors (Basel) ; 23(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37448030

RESUMO

Polymer-based surface plasmon resonance (SPR) sensors can be used to realize simple, small-size, disposable, and low-cost biosensors for application in several fields, e.g., healthcare. The performance of SPR sensors based on optical waveguides can be changed by tuning several parameters, such as the dimensions and the shape of the waveguides, the refractive index of the core, and the metal nanofilms used to excite the SPR phenomenon. In this work, in order to develop, experimentally test, and compare several polymer-based plasmonic sensors, realized by using waveguides with different core refractive indices, optical adhesives and 3D printed blocks with a trench inside have been used. In particular, the sensors are realized by filling the blocks' trenches (with two plastic optical fibers located at the end of these) with different UV-cured optical adhesives and then covering them with the same bilayer to excite the SPR phenomenon. The developed SPR sensors have been characterized by numerical and experimental results. Finally, in order to propose photonic solutions for healthcare, a comparative analysis has been reported to choose the best sensor configuration useful for developing low-cost biosensors.


Assuntos
Fibras Ópticas , Plásticos , Adesivos , Ressonância de Plasmônio de Superfície , Polímeros
7.
Nanomaterials (Basel) ; 12(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35564109

RESUMO

Plasmonic bio/chemical sensing based on optical fibers combined with molecularly imprinted nanoparticles (nanoMIPs), which are polymeric receptors prepared by a template-assisted synthesis, has been demonstrated as a powerful method to attain ultra-low detection limits, particularly when exploiting soft nanoMIPs, which are known to deform upon analyte binding. This work presents the development of a surface plasmon resonance (SPR) sensor in silica light-diffusing fibers (LDFs) functionalized with a specific nanoMIP receptor, entailed for the recognition of the protein human serum transferrin (HTR). Despite their great versatility, to date only SPR-LFDs functionalized with antibodies have been reported. Here, the innovative combination of an SPR-LFD platform and nanoMIPs led to the development of a sensor with an ultra-low limit of detection (LOD), equal to about 4 fM, and selective for its target analyte HTR. It is worth noting that the SPR-LDF-nanoMIP sensor was mounted within a specially designed 3D-printed holder yielding a measurement cell suitable for a rapid and reliable setup, and easy for the scaling up of the measurements. Moreover, the fabrication process to realize the SPR platform is minimal, requiring only a metal deposition step.

8.
Sensors (Basel) ; 21(19)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34640653

RESUMO

In this work, we experimentally analyzed the effect of tapering in light-diffusing optical fibers (LDFs) when employed as surface plasmon resonance (SPR)-based sensors. Although tapering is commonly adopted to enhance the performance of plasmonic optical fiber sensors, we have demonstrated that in the case of plasmonic sensors based on LDFs, the tapering produces a significant worsening of the bulk sensitivity (roughly 60% in the worst case), against a slight decrease in the full width at half maximum (FWHM) of the SPR spectra. Furthermore, we have demonstrated that these aspects become more pronounced when the taper ratio increases. Secondly, we have established that a possible alternative exists in using the tapered LDF as a modal filter after the sensible region. In such a case, we have determined that a good trade-off between the loss in sensitivity and the FWHM decrease could be reached.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA