Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 261(Pt 2): 129694, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38281525

RESUMO

The lignin from tritordeum straw, a hybrid cereal from crossbreeding of durum wheat and wild barley, was isolated and chemically characterized. Its composition and structure were studied by analytical pyrolysis (Py-GC/MS), nuclear magnetic resonance spectroscopy (NMR), Derivatization Followed by Reductive Cleavage (DFRC) method, and gel permeation chromatography (GPC). The data revealed an enrichment of guaiacyl (G) units (H:G:S of 3:61:36), which had a significant impact on the distribution of inter-unit linkages. The predominant linkages were the ß-O-4' alkyl-aryl ethers (78 % of all linkages), with substantial proportions of condensed linkages such as phenylcoumarans (11 %), resinols (4 %), spirodienones (4 %), and dibenzodioxocins (2 %). Moreover, DFRC revealed that tridordeum straw lignin was partly acylated at the γ-OH with both acetates and p-coumarates. Acetates were principally attached to G-units, whereas p-coumarates were predominantly attached to S-units. Furthermore, and more importantly, tritordeum lignin incorporates remarkable amounts of a valuable flavone, tricin, exceeding 30 g per kilogram of straw. Given the diverse industrial applications associated with this high-value molecule, tritordeum straw emerges as a promising and sustainable resource for its extraction.


Assuntos
Grão Comestível , Flavonoides , Lignina , Lignina/química , Grão Comestível/química , Estrutura Molecular , Acetatos/análise
2.
Int J Biol Macromol ; 242(Pt 2): 124811, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37187416

RESUMO

The differences in the composition and structure of the lignins from straws of different oat (Avena sativa L.) varieties, planted in two seasons (winter and spring), were studied in detail by different analytical techniques such as pyrolysis coupled to gas chromatography-mass spectrometry (Py-GC/MS), two-dimensional nuclear magnetic resonance (2D-NMR), derivatization followed by reductive cleavage (DFRC), and gel permeation chromatography (GPC). Overall, the analyses revealed that oat straw lignins were enriched in guaiacyl (G; 50-56 %) and syringyl (S; 39-44 %) units, with relatively lower amounts of p-hydroxyphenyl (H; 4-6 %) units. The lignins also incorporated significant quantities of p-coumarates (8-14 % of total lignin units), which are acylating the γ-OH of the lignin side chains, and predominantly over the S units. Furthermore, oat straw lignins also incorporated considerable amounts of the flavone tricin (5-12 % of total lignin units). Interestingly, this study revealed that the lignin content and composition of the oat straws vary with genotype and planting season. Since p-coumarates and tricin are high-value aromatic compounds especially attractive from a biorefinery point of view, the information disclosed here is highly relevant to plant breeding programs aimed at developing functional foods and lignin modifications for improved biorefinery applications.


Assuntos
Avena , Lignina , Lignina/química , Estações do Ano , Melhoramento Vegetal , Espectroscopia de Ressonância Magnética
3.
Polymers (Basel) ; 15(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37111987

RESUMO

The pruning of sweet orange trees (Citrus sinensis) generates large amounts of lignocellulosic residue. Orange tree pruning (OTP) residue presents a significant lignin content (21.2%). However, there are no previous studies describing the structure of the native lignin in OTPs. In the present work, the "milled-wood lignin" (MWL) was extracted from OTPs and examined in detail via gel permeation chromatography (GPC), pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS), and two-dimensional nuclear magnetic resonance (2D-NMR). The results indicated that the OTP-MWL was mainly composed of guaiacyl (G) units, followed by syringyl (S) units and minor amounts of p-hydroxyphenyl (H) units (H:G:S composition of 1:62:37). The predominance of G-units had a strong influence on the abundance of the different linkages; therefore, although the most abundant linkages were ß-O-4' alkyl-aryl ethers (70% of total lignin linkages), the lignin also contained significant amounts of phenylcoumarans (15%) and resinols (9%), as well as other condensed linkages such as dibenzodioxocins (3%) and spirodienones (3%). The significant content of condensed linkages will make this lignocellulosic residue more recalcitrant to delignification than other hardwoods with lower content of these linkages.

4.
Sci Adv ; 9(10): eade5519, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36888720

RESUMO

Hydroxystilbenes are a class of polyphenolic compounds that behave as lignin monomers participating in radical coupling reactions during the lignification. Here, we report the synthesis and characterization of various artificial copolymers of monolignols and hydroxystilbenes, as well as low-molecular-mass compounds, to obtain the mechanistic insights into their incorporation into the lignin polymer. Integrating the hydroxystilbenes, resveratrol and piceatannol, into monolignol polymerization in vitro, using horseradish peroxidase to generate phenolic radicals, produced synthetic lignins [dehydrogenation polymers (DHPs)]. Copolymerization of hydroxystilbenes with monolignols, especially sinapyl alcohol, by in vitro peroxidases notably improved the reactivity of monolignols and resulted in substantial yields of synthetic lignin polymers. The resulting DHPs were analyzed using two-dimensional NMR and 19 synthesized model compounds to confirm the presence of hydroxystilbene structures in the lignin polymer. The cross-coupled DHPs confirmed both resveratrol and piceatannol as authentic monomers participating in the oxidative radical coupling reactions during polymerization.


Assuntos
Biomimética , Lignina , Resveratrol , Lignina/metabolismo , Polimerização , Estresse Oxidativo
5.
J Exp Bot ; 73(18): 6307-6333, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-35788296

RESUMO

The molecular mechanisms associated with secondary cell wall (SCW) deposition in sorghum remain largely uncharacterized. Here, we employed untargeted metabolomics and large-scale transcriptomics to correlate changes in SCW deposition with variation in global gene expression profiles and metabolite abundance along an elongating internode of sorghum, with a major focus on lignin and phenolic metabolism. To gain deeper insight into the metabolic and transcriptional changes associated with pathway perturbations, a bmr6 mutant [with reduced cinnamyl alcohol dehydrogenase (CAD) activity] was analyzed. In the wild type, internode development was accompanied by an increase in the content of oligolignols, p-hydroxybenzaldehyde, hydroxycinnamate esters, and flavonoid glucosides, including tricin derivatives. We further identified modules of genes whose expression pattern correlated with SCW deposition and the accumulation of these target metabolites. Reduced CAD activity resulted in the accumulation of hexosylated forms of hydroxycinnamates (and their derivatives), hydroxycinnamaldehydes, and benzenoids. The expression of genes belonging to one specific module in our co-expression analysis correlated with the differential accumulation of these compounds and contributed to explaining this metabolic phenotype. Metabolomics and transcriptomics data further suggested that CAD perturbation activates distinct detoxification routes in sorghum internodes. Our systems biology approach provides a landscape of the metabolic and transcriptional changes associated with internode development and with reduced CAD activity in sorghum.


Assuntos
Sorghum , Sorghum/genética , Sorghum/metabolismo , Lignina/metabolismo , Regulação da Expressão Gênica de Plantas , Grão Comestível/metabolismo , Flavonoides/metabolismo , Glucosídeos/metabolismo , Ésteres/metabolismo
6.
Antioxidants (Basel) ; 11(4)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35453429

RESUMO

Unspecific peroxygenases (UPOs), the extracellular enzymes capable of oxygenating a potpourri of aliphatic and aromatic substrates with a peroxide as co-substrate, come out with a new reaction: carbon-chain shortening during the conversion of fatty acids with the well-known UPOs from Coprinopsis cinerea (rCciUPO) and Cyclocybe (Agrocybe) aegerita (AaeUPO). Although a pathway (Cα-oxidation) for shortening the hydrocarbon chain of saturated fatty acids has already been reported for the UPO from Marasmius rotula (MroUPO), it turned out that rCciUPO and AaeUPO shorten the chain length of both saturated and unsaturated fatty acids in a different way. Thus, the reaction sequence does not necessarily start at the Cα-carbon (adjacent to the carboxyl group), as in the case of MroUPO, but proceeds through the subterminal (ω-1 and ω-2) carbons of the chain via several oxygenations. This new type of shortening leads to the formation of a dicarboxylic fatty acid reduced in size by two carbon atoms in the first step, which can subsequently be further shortened, carbon by carbon, by the UPO Cα-oxidation mechanism.

7.
Front Plant Sci ; 13: 868319, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392522

RESUMO

Rice (Oryza sativa L.) straw is a highly abundant, widely available, and low cost agricultural waste that can be used as a source to extract valuable phytochemicals of industrial interest. Hence, in the present work, the chemical composition of the lipophilic compounds present in rice straw was thoroughly characterized by gas chromatography and mass spectrometry using medium-length high-temperature capillary columns, which allowed the identification of a wide range of lipophilic compounds, from low molecular weight fatty acids to high molecular weight sterols esters, sterol glucosides, or triglycerides in the same chromatogram. The most abundant lipophilic compounds in rice straw were fatty acids, which accounted for up to 6,400 mg/kg (41.0% of all identified compounds), followed by free sterols (1,600 mg/kg; 10.2%), sterol glucosides (1,380 mg/kg; 8.8%), fatty alcohols (1,150 mg/kg; 7.4%), and triglycerides (1,140 mg/kg; 7.3%), along with lower amounts of high molecular weight wax esters (900 mg/kg; 5.8%), steroid ketones (900 mg/kg; 5.8%), monoglycerides (600 mg/kg; 3.8%), alkanes (400 mg/kg; 2.6%), diglycerides (380 mg/kg; 2.4%), sterol esters (380 mg/kg; 2.4%), tocopherols (340 mg/kg; 2.2%), and steroid hydrocarbons (60 mg/kg; 0.4%). This information is of great use for the valorization of rice straw to obtain valuable lipophilic compounds of interest for the nutraceutical, pharmaceutical, cosmetic, and chemical industries. Moreover, this knowledge is also useful for other industrial uses of rice straw, as in pulp and papermaking, since some lipophilic compounds are at the origin of the so-called pitch deposits during pulping.

8.
Phytochemistry ; 197: 113122, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35131641

RESUMO

Diferuloylputrescine has been found in a variety of plant species, and recent work has provided evidence of its covalent bonding into lignin. Results from nuclear magnetic resonance spectroscopy revealed the presence of bonding patterns consistent with homo-coupling of diferuloylputrescine and the possibility of cross-coupling with lignin. In the present work, density functional theory calculations have been applied to assess the energetics associated with radical coupling, rearomatization, and dehydrogenation for possible homo-coupled dimers of diferuloylputrescine and cross-coupled dimers of diferuloylputrescine and coniferyl alcohol. The values obtained for these reaction energetics are consistent with those reported for monolignols and other novel lignin monomers. As such, this study shows that there would be no thermodynamic impediment to the incorporation of diferuloylputrescine into the lignin polymer and its addition to the growing list of non-canonical lignin monomers.


Assuntos
Lignina , Putrescina , Teoria da Densidade Funcional , Lignina/química , Espectroscopia de Ressonância Magnética , Putrescina/análogos & derivados
9.
Plant Physiol ; 188(1): 208-219, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34662399

RESUMO

Recent studies demonstrate that several polyphenolic compounds produced from beyond the canonical monolignol biosynthetic pathways can behave as lignin monomers, participating in radical coupling reactions and being incorporated into lignin polymers. Here, we show various classes of flavonoids, the chalconoid naringenin chalcone, the flavanones naringenin and dihydrotricin, and the flavone tricin, incorporated into the lignin polymer of papyrus (Cyperus papyrus L.) rind. These flavonoids were released from the rind lignin by Derivatization Followed by Reductive Cleavage (DFRC), a chemical degradative method that cleaves the ß-ether linkages, indicating that at least a fraction of each was integrated into the lignin as ß-ether-linked structures. Due to the particular structure of tricin and dihydrotricin, whose C-3' and C-5' positions at their B-rings are occupied by methoxy groups, these compounds can only be incorporated into the lignin through 4'-O-ß bonds. However, naringenin chalcone and naringenin have no substituents at these positions and can therefore form additional carbon-carbon linkages, including 3'- or 5'-ß linkages that form phenylcoumaran structures not susceptible to cleavage by DFRC. Furthermore, Nuclear Magnetic Resonance analysis indicated that naringenin chalcone can also form additional linkages through its conjugated double bond. The discovery expands the range of flavonoids incorporated into natural lignins, further broadens the traditional definition of lignin, and enhances the premise that any phenolic compound present at the cell wall during lignification could be oxidized and potentially integrated into the lignin structure, depending only on its chemical compatibility. This study indicates that papyrus lignin has a unique structure, as it is the only lignin known to date that integrates such a diversity of phenolic compounds from different classes of flavonoids. This discovery will open up new ways to engineer and design lignins with specific properties and for enhanced value.


Assuntos
Sítios de Ligação , Cyperus/química , Cyperus/metabolismo , Flavonoides/biossíntese , Lignina/biossíntese , Estrutura Molecular , Vias Biossintéticas , Egito
10.
Front Plant Sci ; 13: 1097866, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36618622

RESUMO

Papyrus (Cyperus papyrus L.) is a sedge plant with a high rate of biomass productivity that represents an interesting raw material to produce chemicals, materials and fuels, which are currently still obtained from fossil resources, in the context of a lignocellulosic biorefinery. In this work, the content and chemical composition of the lipids present in papyrus stems were thoroughly studied. For this, the papyrus stems were separated into the rind and the pith. The lipid content accounted for 4.1% in the rind and 4.9% in the pith (based on dry matter). The main compounds identified in both parts of the papyrus stem were hydrocarbons, n-fatty acids, 2-hydroxyfatty acids, alcohols, alkylamides, mono- and diglycerides, steroids (sterols, ketones, hydrocarbons, esters and glycosides), tocopherols, tocopherol esters, phytol, phytol esters, alkyl ferulates, ω-carboxyalkyl ferulates (and their monoglycerides), and acylglycerol glycosides. The rind presented a predominance of n-fatty acids (6790 mg/kg; that represented 28.6% of all identified compounds), steroid compounds (6255 mg/kg; 26.3%), phytol and phytol esters (4985 mg/kg; 21.0%), and isoprenoid hydrocarbons, namely phytadiene and squalene (2660 mg/kg; 11.2%), while the most abundant lipids in the pith were steroids (8600 mg/kg; 44.4% of all identified compounds) and fatty acids (6245 mg/kg; 32.2%). Due to the great diversity and significant abundance of the compounds identified in papyrus, it can be considered as a potential raw material for biorefineries to obtain valuable phytochemicals of interest to various industrial sectors.

11.
Front Plant Sci ; 12: 740923, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34691117

RESUMO

In the present work, lignin-like fractions were isolated from several ancestral plants -including moss (Hypnum cupressiforme and Polytrichum commune), lycophyte (Selaginella kraussiana), horsetail (Equisetum palustre), fern (Nephrolepis cordifolia and Pteridium aquilinum), cycad (Cycas revoluta), and gnetophyte (Ephedra fragilis) species- and structurally characterized by pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) and two-dimensional nuclear magnetic resonance (2D-NMR) spectroscopy. Py-GC/MS yielded marker compounds characteristic of lignin units, except in the H. cupressiforme, P. commune and E. palustre "lignins," where they were practically absent. Additional structural information on the other five samples was obtained from 2D-NMR experiments displaying intense correlations signals of guaiacyl (G) units in the fern and cycad lignins, along with smaller amounts of p-hydroxyphenyl (H) units. Interestingly, the lignins from the lycophyte S. kraussiana and the gnetophyte E. fragilis were not only composed of G- and H-lignin units but they also incorporated significant amounts of the syringyl (S) units characteristic of angiosperms, which appeared much later in plant evolution, most probably due to convergent evolution. The latter finding is also supported by the abundance of syringol derivatives after the Py-GC/MS analyses of these two samples. Regarding lignin structure, ß-O-4' alkyl-aryl ethers were the most abundant substructures, followed by condensed ß-5' phenylcoumarans and ß-ß' resinols (and dibenzodioxocins in the fern and cycad lignins). The highest percentages of alkyl-aryl ether structures correlated with the higher S/G ratio in the S. Kraussiana and E. fragilis lignin-like fractions. More interestingly, apart from the typical monolignol-derived lignin units (H, G and S), other structures, assigned to flavonoid compounds never reported before in natural lignins (such as amentoflavone, apigenin, hypnogenol B, kaempferol, and naringenin), could also be identified in the HSQC spectra of all the lignin-like fractions analyzed. With this purpose, in vitro synthesized coniferyl-naringenin and coniferyl-apigenin dehydrogenation polymers were used as standards. These flavonoids were abundant in H. cupressiforme appearing as the only constituents of the moss lignin-like fraction (including 84% of dimeric hypnogenol B) and their abundance decreased in those of S. Kraussiana (with amentoflavone and naringenin representing 14% of the total aromatic units), and the two ancient gymnosperms (0.4-1.2%) and ferns (0-0.7%).

12.
Molecules ; 26(14)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34299657

RESUMO

Papyri belong to the oldest writing grounds in history. Their conservation is of the highest importance in preserving our cultural heritage, which is best achieved based on an extensive knowledge of the materials' constituents to choose a tailored conservation approach. Thermogravimetric Analysis (TGA) has been widely employed to quantify cellulose and lignin in papyrus sheets, yielding reported lignin contents of 25% to 40%. In this work, the TGA method conventionally used for papyrus samples was repeated and compared to other lignin determination approaches (Klason-lignin and acetyl bromide-soluble lignin). TGA can lead to a large overestimation of the lignin content of commercial papyrus sheets (~27%) compared to the other methods (~5%). A similar overestimation of the lignin content was found for the pith and rind of the native papyrus plant. We concluded that the TGA method should, therefore, not be used for lignin quantification.


Assuntos
Lignina/análise , Extratos Vegetais
13.
Front Plant Sci ; 12: 640475, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679856

RESUMO

Rice (Oryza sativa L.) is a major cereal crop used for human nutrition worldwide. Harvesting and processing of rice generates huge amounts of lignocellulosic by-products such as rice husks and straw, which present important lignin contents that can be used to produce chemicals and materials. In this work, the structural characteristics of the lignins from rice husks and straw have been studied in detail. For this, whole cell walls of rice husks and straw and their isolated lignin preparations were thoroughly analyzed by an array of analytical techniques, including pyrolysis coupled to gas chromatography-mass spectrometry (Py-GC/MS), nuclear magnetic resonance (NMR), and derivatization followed by reductive cleavage (DFRC). The analyses revealed that both lignins, particularly the lignin from rice husks, were highly enriched in guaiacyl (G) units, and depleted in p-hydroxyphenyl (H) and syringyl (S) units, with H:G:S compositions of 7:81:12 (for rice husks) and 5:71:24 (for rice straw). These compositions were reflected in the relative abundances of the different interunit linkages. Hence, the lignin from rice husks were depleted in ß-O-4' alkyl-aryl ether units (representing 65% of all inter-unit linkages), but presented important amounts of ß-5' (phenylcoumarans, 23%) and other condensed units. On the other hand, the lignin from rice straw presented higher levels of ß-O-4' alkyl-aryl ethers (78%) but lower levels of phenylcoumarans (ß-5', 12%) and other condensed linkages, consistent with a lignin with a slightly higher S/G ratio. In addition, both lignins were partially acylated at the γ-OH of the side-chain (ca. 10-12% acylation degree) with p-coumarates, which overwhelmingly occurred over S-units. Finally, important amounts of the flavone tricin were also found incorporated into these lignins, being particularly abundant in the lignin of rice straw.

14.
Front Plant Sci ; 12: 642848, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33737945

RESUMO

The monolignols, p-coumaryl, coniferyl, and sinapyl alcohol, arise from the general phenylpropanoid biosynthetic pathway. Increasingly, however, authentic lignin monomers derived from outside this process are being identified and found to be fully incorporated into the lignin polymer. Among them, hydroxystilbene glucosides, which are produced through a hybrid process that combines the phenylpropanoid and acetate/malonate pathways, have been experimentally detected in the bark lignin of Norway spruce (Picea abies). Several interunit linkages have been identified and proposed to occur through homo-coupling of the hydroxystilbene glucosides and their cross-coupling with coniferyl alcohol. In the current work, the thermodynamics of these coupling modes and subsequent rearomatization reactions have been evaluated by the application of density functional theory (DFT) calculations. The objective of this paper is to determine favorable coupling and cross-coupling modes to help explain the experimental observations and attempt to predict other favorable pathways that might be further elucidated via in vitro polymerization aided by synthetic models and detailed structural studies.

15.
ChemSusChem ; 13(17): 4537-4547, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32395900

RESUMO

Lignins from different tree barks, including Norway spruce (Picea abies), eucalyptus (Eucalyptus globulus), mimosa (Acacia dealbata) and blackwood acacia (A. melanoxylon), are thoroughly characterized. The lignin from E. globulus bark is found to be enriched in syringyl (S) units, with lower amounts of guaiacyl (G) and p-hydroxyphenyl (H) units (H/G/S ratio of 1:26:73), which produces a lignin that is highly enriched in ß-ether linkages (83 %), whereas those from the two Acacia barks have similar compositions (H/G/S ratio of ≈5:50:45), with a predominance of ß-ethers (73-75 %) and lower amounts of condensed carbon-carbon linkages; the lignin from A. dealbata bark also includes some resorcinol-related compounds, that appear to be incorporated or intimately associated to the polymer. The lignin from P. abies bark is enriched in G units, with lower amounts of H units (H/G ratio of 14:86); this lignin is thus depleted in ß-O-4' alkyl-aryl ether linkages (44 %) and enriched in condensed linkages. Interestingly, this lignin contains large amounts of hydroxystilbene glucosides that seem to be integrally incorporated into the lignin structure. This study indicates that lignins from tree barks can be seen as an interesting source of valuable phenolic compounds. Moreover, this study is useful for tailoring conversion technologies for bark deconstruction and valorization.


Assuntos
Lignina/química , Casca de Planta/química , Extratos Vegetais/química , Éteres/química , Eucalyptus/química , Cromatografia Gasosa-Espectrometria de Massas , Glucosídeos/química , Estrutura Molecular , Fenol/química , Picea/química , Solventes/química , Estilbestrois/química
16.
Plant Cell Environ ; 43(9): 2172-2191, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32441772

RESUMO

Although cell wall polymers play important roles in the tolerance of plants to abiotic stress, the effects of salinity on cell wall composition and metabolism in grasses remain largely unexplored. Here, we conducted an in-depth study of changes in cell wall composition and phenolic metabolism induced upon salinity in maize seedlings and plants. Cell wall characterization revealed that salt stress modulated the deposition of cellulose, matrix polysaccharides and lignin in seedling roots, plant roots and stems. The extraction and analysis of arabinoxylans by size-exclusion chromatography, 2D-NMR spectroscopy and carbohydrate gel electrophoresis showed a reduction of arabinoxylan content in salt-stressed roots. Saponification and mild acid hydrolysis revealed that salinity also reduced the feruloylation of arabinoxylans in roots of seedlings and plants. Determination of lignin content and composition by nitrobenzene oxidation and 2D-NMR confirmed the increased incorporation of syringyl units in lignin of maize roots. Salt stress also induced the expression of genes and the activity of enzymes enrolled in phenylpropanoid biosynthesis. The UHPLC-MS-based metabolite profiling confirmed the modulation of phenolic profiling by salinity and the accumulation of ferulate and its derivatives 3- and 4-O-feruloyl quinate. In conclusion, we present a model for explaining cell wall remodeling in response to salinity.


Assuntos
Parede Celular/química , Fenóis/metabolismo , Polissacarídeos/metabolismo , Zea mays/citologia , Zea mays/metabolismo , Parede Celular/metabolismo , Celulose/análise , Celulose/química , Ácidos Cumáricos/metabolismo , Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Monossacarídeos/análise , Células Vegetais/metabolismo , Raízes de Plantas/metabolismo , Polissacarídeos/química , Estresse Salino/fisiologia , Plântula/citologia , Plântula/metabolismo , Xilanos/análise , Xilanos/química , Xilanos/metabolismo , Zea mays/crescimento & desenvolvimento
17.
Front Plant Sci ; 11: 617020, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33469464

RESUMO

Plant lignocellulosic biomass, mostly composed of polysaccharide-rich secondary cell walls (SCWs), provides fermentable sugars that may be used to produce biofuels and biomaterials. However, the complex chemical composition and physical structure of SCWs hinder efficient processing of plant biomass. Understanding the molecular mechanisms underlying SCW deposition is, thus, essential to optimize bioenergy feedstocks. Here, we establish a xylogenic culture as a model system to study SCW deposition in sugarcane; the first of its kind in a C4 grass species. We used auxin and brassinolide to differentiate sugarcane suspension cells into tracheary elements, which showed metaxylem-like reticulate or pitted SCW patterning. The differentiation led to increased lignin levels, mainly caused by S-lignin units, and a rise in p-coumarate, leading to increased p-coumarate:ferulate ratios. RNAseq analysis revealed massive transcriptional reprogramming during differentiation, with upregulation of genes associated with cell wall biogenesis and phenylpropanoid metabolism and downregulation of genes related to cell division and primary metabolism. To better understand the differentiation process, we constructed regulatory networks of transcription factors and SCW-related genes based on co-expression analyses. Accordingly, we found multiple regulatory modules that may underpin SCW deposition in sugarcane. Our results provide important insights and resources to identify biotechnological strategies for sugarcane biomass optimization.

18.
Front Bioeng Biotechnol ; 8: 605854, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33469532

RESUMO

Epoxides of vegetable oils and free and methylated fatty acids are of interest for several industrial applications. In the present work, refined rapeseed, sunflower, soybean, and linseed oils, with very different profiles of mono- and poly-unsaturated fatty acids, were saponified and transesterified, and the products treated with wild unspecific peroxygenases (UPOs, EC 1.11.2.1) from the ascomycete Chaetomium globosum (CglUPO) and the basidiomycete Marasmius rotula (MroUPO), as well as with recombinant UPO of the ascomycete Humicola insolens (rHinUPO), as an alternative to chemical epoxidation that is non-selective and requires strongly acidic conditions. The three enzymes were able of converting the free fatty acids and the methyl esters from the oils into epoxide derivatives, although significant differences in the oxygenation selectivities were observed between them. While CglUPO selectively produced "pure" epoxides (monoepoxides and/or diepoxides), MroUPO formed also hydroxylated derivatives of these epoxides, especially in the case of the oil hydrolyzates. Hydroxylated derivatives of non-epoxidized unsaturated fatty acids were practically absent in all cases, due to the preference of the three UPOs selected for this study to form the epoxides. Moreover, rHinUPO, in addition to forming monoepoxides and diepoxides of oleic and linoleic acid (and their methyl esters), respectively, like the other two UPOs, was capable of yielding the triepoxides of α-linolenic acid and its methyl ester. These enzymes appear as promising biocatalysts for the environmentally friendly production of reactive fatty-acid epoxides given their self-sufficient monooxygenase activity with selectivity toward epoxidation, and the ability to epoxidize, not only isolated pure fatty acids, but also complex mixtures from oil hydrolysis or transesterification containing different combinations of unsaturated (and saturated) fatty acids.

19.
Plant Physiol ; 180(3): 1310-1321, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31023874

RESUMO

Recent investigations have revealed that, in addition to monolignols, some phenolic compounds derived from the flavonoid and hydroxystilbene biosynthetic pathways can also function as true lignin monomers in some plants. In this study, we found that the hydroxystilbene glucosides isorhapontin (isorhapontigenin-O-glucoside) and, at lower levels, astringin (piceatannol-O-glucoside) and piceid (resveratrol-O-glucoside) are incorporated into the lignin polymer in Norway spruce (Picea abies) bark. The corresponding aglycones isorhapontigenin, piceatannol, and resveratrol, along with glucose, were released by derivatization followed by reductive cleavage, a chemical degradative method that cleaves ß-ether bonds in lignin, indicating that the hydroxystilbene glucosides are (partially) incorporated into the lignin structure through ß-ether bonds. Two-dimensional NMR analysis confirmed the occurrence of hydroxystilbene glucosides in this lignin, and provided additional information regarding their modes of incorporation into the polymer. The hydroxystilbene glucosides, particularly isorhapontin and astringin, can therefore be considered genuine lignin monomers that participate in coupling and cross-coupling reactions during lignification in Norway spruce bark.


Assuntos
Glucosídeos/metabolismo , Picea/metabolismo , Casca de Planta/metabolismo , Estilbenos/metabolismo , Glucosídeos/química , Lignina/síntese química , Lignina/química , Lignina/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Químicos , Estrutura Molecular , Noruega , Picea/química , Casca de Planta/química , Resveratrol/química , Resveratrol/metabolismo , Estilbenos/química
20.
Materials (Basel) ; 11(11)2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30405081

RESUMO

A method consisting of the alkaline hydrolysis of tomato pomace by-products has been optimized to obtain a mixture of unsaturated and polyhydroxylated fatty acids as well as a non-hydrolysable secondary residue. Reaction rates and the activation energy of the hydrolysis were calculated to reduce costs associated with chemicals and energy consumption. Lipid and non-hydrolysable fractions were chemically (infrared (IR) spectroscopy, gas chromatography/mass spectrometry (GC-MS)) and thermally (differential scanning calorimetry (DSC), thermogravimetric analysis (TGA)) characterized. In addition, the fatty acid mixture was used to produce cutin-based polyesters. Freestanding films were prepared by non-catalyzed melt-polycondensation and characterized by Attenuated Total Reflected-Fourier Transform Infrared (ATR-FTIR) spectroscopy, solid-state nuclear magnetic resonance (NMR), DSC, TGA, Water Contact Angles (WCA), and tensile tests. These bio-based polymers were hydrophobic, insoluble, infusible, and thermally stable, their physical properties being tunable by controlling the presence of unsaturated fatty acids and oxygen in the reaction. The participation of an oxidative crosslinking side reaction is proposed to be responsible for such modifications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...