Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Adv Mater ; : e2312497, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38610101

RESUMO

This work introduces NeoMag, a system designed to enhance cell mechanics assays in substrate deformation studies. NeoMag uses multidomain magneto-active materials to mechanically actuate the substrate, transmitting reversible mechanical cues to cells. The system boasts full flexibility in alternating loading substrate deformation modes, seamlessly adapting to both upright and inverted microscopes. The multidomain substrates facilitate mechanobiology assays on 2D and 3D cultures. The integration of the system with nanoindenters allows for precise evaluation of cellular mechanical properties under varying substrate deformation modes. The system is used to study the impact of substrate deformation on astrocytes, simulating mechanical conditions akin to traumatic brain injury and ischemic stroke. The results reveal local heterogeneous changes in astrocyte stiffness, influenced by the orientation of subcellular regions relative to substrate strain. These stiffness variations, exceeding 50% in stiffening and softening, and local deformations significantly alter calcium dynamics. Furthermore, sustained deformations induce actin network reorganization and activate Piezo1 channels, leading to an initial increase followed by a long-term inhibition of calcium events. Conversely, fast and dynamic deformations transiently activate Piezo1 channels and disrupt the actin network, causing long-term cell softening. These findings unveil mechanical and functional alterations in astrocytes during substrate deformation, illustrating the multiple opportunities this technology offers.

3.
Nat Commun ; 14(1): 4352, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468521

RESUMO

Mechanosensing is a ubiquitous process to translate external mechanical stimuli into biological responses. Piezo1 ion channels are directly gated by mechanical forces and play an essential role in cellular mechanotransduction. However, readouts of Piezo1 activity are mainly examined by invasive or indirect techniques, such as electrophysiological analyses and cytosolic calcium imaging. Here, we introduce GenEPi, a genetically-encoded fluorescent reporter for non-invasive optical monitoring of Piezo1-dependent activity. We demonstrate that GenEPi has high spatiotemporal resolution for Piezo1-dependent stimuli from the single-cell level to that of the entire organism. GenEPi reveals transient, local mechanical stimuli in the plasma membrane of single cells, resolves repetitive contraction-triggered stimulation of beating cardiomyocytes within microtissues, and allows for robust and reliable monitoring of Piezo1-dependent activity in vivo. GenEPi will enable non-invasive optical monitoring of Piezo1 activity in mechanochemical feedback loops during development, homeostatic regulation, and disease.


Assuntos
Canais Iônicos , Mecanotransdução Celular , Mecanotransdução Celular/fisiologia , Canais Iônicos/metabolismo , Membrana Celular/metabolismo , Fenômenos Mecânicos
4.
Oncogenesis ; 12(1): 23, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37130839

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is the most common and lethal form of pancreatic cancer, characterised by stromal remodelling, elevated matrix stiffness and high metastatic rate. Retinoids, compounds derived from vitamin A, have a history of clinical use in cancer for their anti-proliferative and differentiation effects, and more recently have been explored as anti-stromal therapies in PDAC for their ability to induce mechanical quiescence in cancer associated fibroblasts. Here, we demonstrate that retinoic acid receptor ß (RAR-ß) transcriptionally represses myosin light chain 2 (MLC-2) expression in pancreatic cancer cells. As a key regulatory component of the contractile actomyosin machinery, MLC-2 downregulation results in decreased cytoskeletal stiffness and traction force generation, impaired response to mechanical stimuli via mechanosensing and reduced ability to invade through the basement membrane. This work highlights the potential of retinoids to target the mechanical drivers of pancreatic cancer.

5.
Biomaterials ; 293: 121982, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36640555

RESUMO

Human pluripotent stem cell-derived hepatocytes (hPSC-Heps) may be suitable for treating liver diseases, but differentiation protocols often fail to yield adult-like cells. We hypothesised that replicating healthy liver niche biochemical and biophysical cues would produce hepatocytes with desired metabolic functionality. Using 2D synthetic hydrogels which independently control mechanical properties and biochemical cues, we found that culturing hPSC-Heps on surfaces matching the stiffness of fibrotic liver tissue upregulated expression of genes for RGD-binding integrins, and increased expression of YAP/TAZ and their transcriptional targets. Alternatively, culture on soft, healthy liver-like substrates drove increases in cytochrome p450 activity and ureagenesis. Knockdown of ITGB1 or reducing RGD-motif-containing peptide concentration in stiff hydrogels reduced YAP activity and improved metabolic functionality; however, on soft substrates, reducing RGD concentration had the opposite effect. Furthermore, targeting YAP activity with verteporfin or forskolin increased cytochrome p450 activity, with forskolin dramatically enhancing urea synthesis. hPSC-Heps could also be successfully encapsulated within RGD peptide-containing hydrogels without negatively impacting hepatic functionality, and compared to 2D cultures, 3D cultured hPSC-Heps secreted significantly less fetal liver-associated alpha-fetoprotein, suggesting furthered differentiation. Our platform overcomes technical hurdles in replicating the liver niche, and allowed us to identify a role for YAP/TAZ-mediated mechanosensing in hPSC-Hep differentiation.


Assuntos
Hepatócitos , Oligopeptídeos , Humanos , Colforsina/metabolismo , Colforsina/farmacologia , Diferenciação Celular , Oligopeptídeos/farmacologia , Oligopeptídeos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/farmacologia , Hidrogéis/química
6.
Adv Healthc Mater ; 12(13): e2203297, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36717365

RESUMO

Stem cells are known to sense and respond to the mechanical properties of biomaterials. In turn, cells exert forces on their environment that can lead to striking changes in shape, size and contraction of associated tissues, and may result in mechanical disruption and functional failure. However, no study has so far correlated stem cell phenotype and biomaterials toughness. Indeed, disentangling toughness-mediated cell response from other mechanosensing processes has remained elusive as it is particularly challenging to uncouple Youngs' or shear moduli from toughness, within a range relevant to cell-generated forces. In this report, it is shown how the design of the macromolecular architecture of polymer nanosheets regulates interfacial toughness, independently of interfacial shear storage modulus, and how this controls the expansion of mesenchymal stem cells at liquid interfaces. The viscoelasticity and toughness of poly(l-lysine) nanosheets assembled at liquid-liquid interfaces is characterised via interfacial shear rheology. The local (microscale) mechanics of nanosheets are characterised via magnetic tweezer-assisted interfacial microrheology and the thickness of these assemblies is determined from in situ ellipsometry. Finally, the response of mesenchymal stem cells to adhesion and culture at corresponding interfaces is investigated via immunostaining and confocal microscopy.


Assuntos
Células-Tronco Mesenquimais , Nanoestruturas , Materiais Biocompatíveis/metabolismo
7.
Biomacromolecules ; 24(10): 4419-4429, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-36696687

RESUMO

Multicomponent self-assembly offers opportunities for the design of complex and functional biomaterials with tunable properties. Here, we demonstrate how minor modifications in the molecular structures of peptide amphiphiles (PAs) and elastin-like recombinamers (ELs) can be used to generate coassembling tubular membranes with distinct structures, properties, and bioactivity. First, by introducing minor modifications in the charge density of PA molecules (PAK2, PAK3, PAK4), different diffusion-reaction processes can be triggered, resulting in distinct membrane microstructures. Second, by combining different types of these PAs prior to their coassembly with ELs, further modifications can be achieved, tuning the structures and properties of the tubular membranes. Finally, by introducing the cell adhesive peptide RGDS in either the PA or EL molecules, it is possible to harness the different diffusion-reaction processes to generate tubular membranes with distinct bioactivities. The study demonstrates the possibility to trigger and achieve minor but crucial differences in coassembling processes and tune material structure and bioactivity. The study demonstrates the possibility to use minor, yet crucial, differences in coassembling processes to tune material structure and bioactivity.


Assuntos
Materiais Biocompatíveis , Peptídeos , Peptídeos/química , Estrutura Molecular
9.
Biomaterials ; 284: 121494, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35413511

RESUMO

Although not typically thought to sustain cell adhesion and expansion, liquid substrates have recently been shown to support such phenotypes, providing protein nanosheets could be assembled at corresponding liquid-liquid interfaces. However, the precise mechanical properties required from such quasi-2D nanoassemblies and how these correlate with molecular structure and nanoscale architecture has remained unclear. In this report, we screen a broad range of surfactants, proteins, oils and cell types and correlate interfacial mechanical properties with stem cell expansion. Correlations suggest an impact of interfacial viscoelasticity on the regulation of such behaviour. We combine interfacial rheology and magnetic tweezer-based interfacial microrheology to characterise the viscoelastic profile of protein nanosheets assembled at liquid-liquid interfaces. Based on neutron reflectometry and transmission electron microscopy data, we propose that the amorphous nanoarchitecture of quasi-2D protein nanosheets controls their multi-scale viscoelasticity which, in turn, correlates with cell expansion. This understanding paves the way for the rational design of protein nanosheets for microdroplet and bioemulsion-based stem cell manufacturing and screening platforms.


Assuntos
Proteínas , Células-Tronco , Proliferação de Células , Proteínas/química , Reologia , Viscosidade
10.
ACS Nano ; 16(3): 4322-4337, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35255206

RESUMO

Liver fibrosis, a condition characterized by extensive deposition and cross-linking of extracellular matrix (ECM) proteins, is idiosyncratic in cases of chronic liver injury. The dysregulation of ECM remodeling by hepatic stellate cells (HSCs), the main mediators of fibrosis, results in an elevated ECM stiffness that drives the development of chronic liver disease such as cirrhosis and hepatocellular carcinoma. Tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) is a key element in the regulation of ECM remodeling, which modulates the degradation and turnover of ECM components. We have previously reported that a rigid, fibrotic-like substrate can impact TIMP-1 expression at the protein level in HSCs without altering its mRNA expression. While HSCs are known to be highly susceptible to mechanical stimuli, the mechanisms through which mechanical cues regulate TIMP-1 at the post-translational level remain unclear. Here, we show a mechanism of regulation of plasma membrane tension by matrix stiffness. We found that this effect is orchestrated by the ß1 integrin/RhoA axis and results in elevated exocytosis and secretion of TIMP-1 in a caveolin-1- and dynamin-2-dependent manner. We then show that TIMP-1 and caveolin-1 expression increases in cirrhosis and hepatocellular carcinoma. These conditions are associated with fibrosis, and this effect can be recapitulated in 3D fibrosis models consisting of hepatic stellate cells encapsulated in a self-assembling polypeptide hydrogel. This work positions stiffness-dependent membrane tension as a key regulator of enzyme secretion and function and a potential target for therapeutic strategies that aim at modulating ECM remodeling in chronic liver disease.


Assuntos
Carcinoma Hepatocelular , Caveolina 1 , Neoplasias Hepáticas , Inibidor Tecidual de Metaloproteinase-1 , Carcinoma Hepatocelular/patologia , Caveolina 1/metabolismo , Células Estreladas do Fígado/metabolismo , Humanos , Fígado/metabolismo , Cirrose Hepática/metabolismo , Neoplasias Hepáticas/patologia , Inibidor Tecidual de Metaloproteinase-1/metabolismo
11.
J Cell Biol ; 221(2)2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35024764

RESUMO

The repertoire of extratranslational functions of components of the protein synthesis apparatus is expanding to include control of key cell signaling networks. However, very little is known about noncanonical functions of members of the protein synthesis machinery in regulating cellular mechanics. We demonstrate that the eukaryotic initiation factor 6 (eIF6) modulates cellular mechanobiology. eIF6-depleted endothelial cells, under basal conditions, exhibit unchanged nascent protein synthesis, polysome profiles, and cytoskeleton protein expression, with minimal effects on ribosomal biogenesis. In contrast, using traction force and atomic force microscopy, we show that loss of eIF6 leads to reduced stiffness and force generation accompanied by cytoskeletal and focal adhesion defects. Mechanistically, we show that eIF6 is required for the correct spatial mechanoactivation of ERK1/2 via stabilization of an eIF6-RACK1-ERK1/2-FAK mechanocomplex, which is necessary for force-induced remodeling. These results reveal an extratranslational function for eIF6 and a novel paradigm for how mechanotransduction, the cellular cytoskeleton, and protein translation constituents are linked.


Assuntos
Células Endoteliais/metabolismo , Mecanotransdução Celular , Fatores de Iniciação de Peptídeos/metabolismo , Animais , Fenômenos Biomecânicos , Bovinos , Citoesqueleto/metabolismo , Adesões Focais/metabolismo , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Biossíntese de Proteínas , Ribossomos/metabolismo
12.
Cancers (Basel) ; 13(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209094

RESUMO

The tumor microenvironment plays a critical role in modulating cancer cell migration, metabolism, and malignancy, thus, highlighting the need to develop in vitro culture systems that can recapitulate its abnormal properties. While a variety of stiffness-tunable biomaterials, reviewed here, have been developed to mimic the rigidity of the tumor extracellular matrix, culture systems that can recapitulate the broader extracellular context of the tumor microenvironment (including pH and temperature) remain comparably unexplored, partially due to the difficulty in independently tuning these parameters. Here, we investigate a self-assembled polypeptide network hydrogel as a cell culture platform and demonstrate that the culture parameters, including the substrate stiffness, extracellular pH and temperature, can be independently controlled. We then use this biomaterial as a cell culture substrate to assess the effect of stiffness, pH and temperature on Suit2 cells, a pancreatic cancer cell line, and demonstrate that these microenvironmental factors can regulate two critical transcription factors in cancer: yes-associated protein 1 (YAP) and hypoxia inducible factor (HIF-1A).

13.
Front Cell Dev Biol ; 8: 577201, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195213

RESUMO

VANGL2 is a component of the planar cell polarity (PCP) pathway, which regulates tissue polarity and patterning. The Vangl2 Lp mutation causes lung branching defects due to dysfunctional actomyosin-driven morphogenesis. Since the actomyosin network regulates cell mechanics, we speculated that mechanosignaling could be impaired when VANGL2 is disrupted. Here, we used live-imaging of precision-cut lung slices (PCLS) from Vangl2 Lp/+ mice to determine that alveologenesis is attenuated as a result of impaired epithelial cell migration. Vangl2 Lp/+ tracheal epithelial cells (TECs) and alveolar epithelial cells (AECs) exhibited highly disrupted actomyosin networks and focal adhesions (FAs). Functional assessment of cellular forces confirmed impaired traction force generation in Vangl2 Lp/+ TECs. YAP signaling in Vangl2 Lp airway epithelium was reduced, consistent with a role for VANGL2 in mechanotransduction. Furthermore, activation of RhoA signaling restored actomyosin organization in Vangl2 Lp/+ , confirming RhoA as an effector of VANGL2. This study identifies a pivotal role for VANGL2 in mechanosignaling, which underlies the key role of the PCP pathway in tissue morphogenesis.

14.
Front Cell Dev Biol ; 8: 592628, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195261

RESUMO

Mechanical forces regulate cell functions through multiple pathways. G protein-coupled estrogen receptor (GPER) is a seven-transmembrane receptor that is ubiquitously expressed across tissues and mediates the acute cellular response to estrogens. Here, we demonstrate an unidentified role of GPER as a cellular mechanoregulator. G protein-coupled estrogen receptor signaling controls the assembly of stress fibers, the dynamics of the associated focal adhesions, and cell polarization via RhoA GTPase (RhoA). G protein-coupled estrogen receptor activation inhibits F-actin polymerization and subsequently triggers a negative feedback that transcriptionally suppresses the expression of monomeric G-actin. Given the broad expression of GPER and the range of cytoskeletal changes modulated by this receptor, our findings position GPER as a key player in mechanotransduction.

15.
Methods Cell Biol ; 157: 99-122, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32334722

RESUMO

Metastasis accounts for nearly 90% of all cancer associated mortalities. A hallmark of metastasis in malignancies of epithelial origin such as in the pancreas and breast, is invasion of the basement membrane (BM). While various in vitro assays have been developed to address questions regarding the invasiveness of tumors with relation to the BM, most fail to recapitulate a physiologically accurate cell-membrane interface. Here, we introduce a new 3D in vitro assay that uses the mouse mesenteric tissue as a mimic for the epithelial BM. We describe a simple, cost-effective protocol for extraction and setup of the assay, and show that the mesentery is a physiologically accurate model of the BM in its key components-type IV collagen, laminin-1 and perlecan. Furthermore, we introduce a user-friendly quantification tool, Q-Pi, which allows the 3D reconstruction, visualization and quantification of invasion at a cellular level. Overall, we demonstrate that this invasion assay provides a physiologically accurate tool to investigate BM invasion.


Assuntos
Membrana Basal/citologia , Bioensaio/métodos , Mesentério/citologia , Técnicas de Cultura de Tecidos/métodos , Animais , Membrana Basal/metabolismo , Movimento Celular , Células Epiteliais , Epitélio/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Camundongos , Invasividade Neoplásica/patologia
16.
Nature ; 578(7794): 290-295, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32025034

RESUMO

Shear stress on arteries produced by blood flow is important for vascular development and homeostasis but can also initiate atherosclerosis1. Endothelial cells that line the vasculature use molecular mechanosensors to directly detect shear stress profiles that will ultimately lead to atheroprotective or atherogenic responses2. Plexins are key cell-surface receptors of the semaphorin family of cell-guidance signalling proteins and can regulate cellular patterning by modulating the cytoskeleton and focal adhesion structures3-5. However, a role for plexin proteins in mechanotransduction has not been examined. Here we show that plexin D1 (PLXND1) has a role in mechanosensation and mechanically induced disease pathogenesis. PLXND1 is required for the response of endothelial cells to shear stress in vitro and in vivo and regulates the site-specific distribution of atherosclerotic lesions. In endothelial cells, PLXND1 is a direct force sensor and forms a mechanocomplex with neuropilin-1 and VEGFR2 that is necessary and sufficient for conferring mechanosensitivity upstream of the junctional complex and integrins. PLXND1 achieves its binary functions as either a ligand or a force receptor by adopting two distinct molecular conformations. Our results establish a previously undescribed mechanosensor in endothelial cells that regulates cardiovascular pathophysiology, and provide a mechanism by which a single receptor can exhibit a binary biochemical nature.


Assuntos
Células Endoteliais/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mecanotransdução Celular , Glicoproteínas de Membrana/metabolismo , Estresse Mecânico , Animais , Aterosclerose/metabolismo , Feminino , Integrinas/metabolismo , Camundongos , Neuropilina-1/metabolismo , Maleabilidade , Receptores de Superfície Celular/metabolismo , Semaforinas/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
17.
Nat Mater ; 19(6): 669-678, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31907416

RESUMO

Extensive research over the past decades has identified integrins to be the primary transmembrane receptors that enable cells to respond to external mechanical cues. We reveal here a mechanism whereby syndecan-4 tunes cell mechanics in response to localized tension via a coordinated mechanochemical signalling response that involves activation of two other receptors: epidermal growth factor receptor and ß1 integrin. Tension on syndecan-4 induces cell-wide activation of the kindlin-2/ß1 integrin/RhoA axis in a PI3K-dependent manner. Furthermore, syndecan-4-mediated tension at the cell-extracellular matrix interface is required for yes-associated protein activation. Extracellular tension on syndecan-4 triggers a conformational change in the cytoplasmic domain, the variable region of which is indispensable for the mechanical adaptation to force, facilitating the assembly of a syndecan-4/α-actinin/F-actin molecular scaffold at the bead adhesion. This mechanotransduction pathway for syndecan-4 should have immediate implications for the broader field of mechanobiology.


Assuntos
Integrinas/metabolismo , Mecanotransdução Celular , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Sindecana-4/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Células Cultivadas , Humanos , Integrinas/genética , Proteínas de Membrana/genética , Proteínas de Neoplasias/genética , Sindecana-4/genética , Proteína rhoA de Ligação ao GTP/genética
18.
Cancers (Basel) ; 12(2)2020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-31991740

RESUMO

The invasive properties of cancer cells are intimately linked to their mechanical phenotype, which can be regulated by intracellular biochemical signalling. Cell contractility, induced by mechanotransduction of a stiff fibrotic matrix, and the epithelial-mesenchymal transition (EMT) promote invasion. Metastasis involves cells pushing through the basement membrane into the stroma-both of which are altered in composition with cancer progression. Agonists of the G protein-coupled oestrogen receptor (GPER), such as tamoxifen, have been largely used in the clinic, and interest in GPER, which is abundantly expressed in tissues, has greatly increased despite a lack of understanding regarding the mechanisms which promote its multiple effects. Here, we show that specific activation of GPER inhibits EMT, mechanotransduction and cell contractility in cancer cells via the GTPase Ras homolog family member A (RhoA). We further show that GPER activation inhibits invasion through an in vitro basement membrane mimic, similar in structure to the pancreatic basement membrane that we reveal as an asymmetric bilayer, which differs in composition between healthy and cancer patients.

19.
Front Oncol ; 9: 952, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31608239

RESUMO

The mutational landscapes of pancreatic and liver cancers share many common genetic alterations which drive cancer progression. However, these mutations do not occur in all cases of these diseases, and this tumoral heterogeneity impedes diagnosis, prognosis, and therapeutic development. One minimally invasive method for the evaluation of tumor mutations is the analysis of circulating tumor DNA (ctDNA), released through apoptosis, necrosis, and active secretion by tumor cells into various body fluids. By observing mutations in those genes which promote transformation by controlling the cell cycle and oncogenic signaling pathways, a representation of the mutational profile of the tumor is revealed. The analysis of ctDNA is a promising technique for investigating these two gastrointestinal cancers, as many studies have reported on the accuracy of ctDNA assessment for diagnosis and prognosis using a variety of techniques.

20.
Sci Rep ; 9(1): 13946, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31558796

RESUMO

A graphene field-effect transistor (gFET) was non-covalently functionalised with 1-pyrenebutyric acid N-hydroxysuccinimide ester and conjugated with anti-CD63 antibodies for the label-free detection of exosomes. Using a microfluidic channel, part of a graphene film was exposed to solution. The change in electrical properties of the exposed graphene created an additional minimum alongside the original Dirac point in the drain-source current (Ids) - back-gate voltage (Vg) curve. When phosphate buffered saline (PBS) was present in the channel, the additional minimum was present at a Vg lower than the original Dirac point and shifted with time when exosomes were introduced into the channel. This shift of the minimum from the PBS reference point reached saturation after 30 minutes and was observed for multiple exosome concentrations. Upon conjugation with an isotype control, sensor response to the highest concentration of exosomes was negligible in comparison to that with anti-CD63 antibody, indicating that the functionalised gFET can specifically detect exosomes at least down to 0.1 µg/mL and is sensitive to concentration. Such a gFET biosensor has not been used before for exosome sensing and could be an effective tool for the liquid-biopsy detection of exosomes as biomarkers for early-stage identification of diseases such as cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...