Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5024, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596278

RESUMO

A perimetastatic capsule is a strong positive prognostic factor in liver metastases, but its origin remains unclear. Here, we systematically quantify the capsule's extent and cellular composition in 263 patients with colorectal cancer liver metastases to investigate its clinical significance and origin. We show that survival improves proportionally with increasing encapsulation and decreasing tumor-hepatocyte contact. Immunostaining reveals the gradual zonation of the capsule, transitioning from benign-like NGFRhigh stroma at the liver edge to FAPhigh stroma towards the tumor. Encapsulation correlates with decreased tumor viability and preoperative chemotherapy. In mice, chemotherapy and tumor cell ablation induce capsule formation. Our results suggest that encapsulation develops where tumor invasion into the liver plates stalls, representing a reparative process rather than tumor-induced desmoplasia. We propose a model of metastases growth, where the efficient tumor colonization of the liver parenchyma and a reparative liver injury reaction are opposing determinants of metastasis aggressiveness.


Assuntos
Neoplasias Hepáticas , Animais , Camundongos , Hepatócitos , Agressão , Relevância Clínica
3.
Front Res Metr Anal ; 7: 897670, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35755144

RESUMO

The underdevelopment of the higher education system in Guatemala and the fragility of its science and technology (S&T) contexts have compelled a significant number of talented Guatemalan scientists to be trained, educated, and employed abroad. The relocation of such skilled human power to different countries and regions has resulted in a growing Guatemalan Scientific Diaspora (GSD). Until recently, the emigration of scientists from the Global South to scientifically advanced countries in the North was studied as it negatively impacted the countries of origin. However, technological upgrades and globalization have progressively shifted the paradigm in which such scientific diasporas interact and connect, thus enabling them to influence their home countries positively. Due to the lack of knowledge-based evidence and functioning connecting platforms, the value and potential of the GSD in their involvement in proposing solutions to complex socio-economic, environmental, and other challenges faced by Guatemalan society remain unknown. Moreover, the lack of interaction of relevant stakeholders (S&T policy agents, international partners, higher education institutions and research centers, industry, and relevant not governmental organizations) represents a pervasive obstacle to the untapped impact of the GSD in the country. This study outlines the Guatemalan scientific diasporas' networking as a mechanism for building research excellence and intellectual capital. This force could respond to the need to strengthen the national science capacities and meet the demands for knowledge production and access to broader sectors of society. This research applied qualitative methodology that, through the conduction of focus group discussions and semi-structured interviews with members of the Guatemalan scientific community and relevant key stakeholders, delved into the existence and articulation of the GSD and potential stages for their engagement with their country of origin. Findings highlight the importance of digital and technological pathways that might leverage the GSD's knowledge and experience, channeling skills, and international connections for better interaction with the Guatemalan society. Furthermore, the discussion addresses how technology might turn brain drain into brain circulation, enabling the articulation of the GSD as a viable opportunity to generate collaboration between scientists abroad and local actors, ultimately impacting the building and development of Guatemalan science and national research capacities.

4.
Adv Healthc Mater ; 9(20): e2000864, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32945131

RESUMO

Ferroptotic cell death results from glutathione peroxidase 4 (GPX4) inactivation and/or glutathione (GSH) depletion. Elevated GSH levels are often found in multidrug-resistant (MDR) tumor cells, reducing their sensitivity to chemotherapeutic drugs and the efficacy of treatment. MDR cells also acquire a dependency on GPX4, reducing their oxidative stress and promoting their survival. Therefore, the depletion of GSH and inactivation of GPX4 has the potential to be a superior treatment strategy for MDR tumors. Platinum-decorated gold nanostars (Pt-AuNS) are presented as a novel metal nanoprodrug for ferroptotic therapy against MDR tumors. Under dark conditions, the synthesized Pt-AuNS exhibit negligible levels of toxicity. Upon exposure of the Pt-AuNS to near-infrared (NIR) light, active metallic (Pt and Au) species are released, subsequently inducing cytotoxicity. The mechanism of action is attributed to GSH depletion and GPX4 inactivation, accumulating lipid hydroperoxides, which in turn leads to ferroptosis. In in vivo xenograft, the MDR cancer model confirmed the NIR light-activation of Pt-AuNS prodrugs, resulting in efficient ferroptotic therapeutic action against MDR tumors without long-term side effects. The findings lay the groundwork for using Pt-AuNS prodrugs responsive to NIR light as ferroptosis-inducing agents in chemo-resistant cancer cells and demonstrate their potential for use in future clinical applications.


Assuntos
Ferroptose , Neoplasias , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Ouro , Platina
5.
Biomater Sci ; 8(7): 1934-1950, 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32039412

RESUMO

An aptamer-conjugated gold nanostar (dsDDA-AuNS) has been developed for targeting nucleolin present in both tumor cells and tumor vasculature for conducting a drug-resistant cancer therapy. AuNS with its strong absorption in the near-infrared (NIR) region was assembled with a layer of the anti-nucleolin aptamer AS1411. An anticancer drug, namely doxorubicin (DOX), was specifically conjugated on deoxyguanosine residues employing heat and acid labile methylene linkages. In response to NIR irradiation, dsDDA-AuNS allowed on-demand therapeutics. AS1411 played an active role in drug cargo-nucleus interactions, enhancing drug accumulation in the nuclei of drug-resistant breast cancer cells. The intravenous injection of dsDDA-AuNS allowed higher drug accumulation in drug-resistant tumors over naked drugs, leading to greater therapeutic efficacy even at a 54-fold less equivalent drug dose. The in vivo triggered release of DOX from dsDDA-AuNS was achieved by NIR irradiation, resulting in simultaneous photothermal and chemotherapeutic actions, yielding superior tumor growth inhibition than those obtained from either type of monotherapy for overcoming drug resistance in cancers.


Assuntos
Antineoplásicos/administração & dosagem , Aptâmeros de Nucleotídeos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ouro/química , Oligodesoxirribonucleotídeos/administração & dosagem , Administração Intravenosa , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/farmacologia , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Doxorrubicina/farmacologia , Feminino , Humanos , Células MCF-7 , Nanopartículas Metálicas , Camundongos , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/farmacologia , Fosfoproteínas/efeitos dos fármacos , Fosfoproteínas/genética , Proteínas de Ligação a RNA/efeitos dos fármacos , Proteínas de Ligação a RNA/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Nucleolina
6.
ACS Appl Mater Interfaces ; 10(25): 21160-21172, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29863836

RESUMO

Abnormal biochemical alteration such as unbalanced reactive oxygen species (ROS) levels has been considered as a potential disease-specific trigger to deliver therapeutics to target sites. However, in view of their minute variations in concentration, short lifetimes, and limited ranges of action, in situ generation of ROS with specific manipulations should be more effective for ROS-responsive drug delivery. Here we present a new delivery nanoplatform for photodynamic therapy (PDT) with on-demand drug release regulated by light irradiation. Rose bengal (RB) molecules, which exhibit a high yield of ROS generation, were encapsulated in a mixture of chitosan (CTS), poly(vinyl alcohol) (PVA), and branched polyethylenimine ( bPEI) with hydrophobic iron oxide nanoparticles through an oil-in-water emulsion method. The as-prepared magnetic nanoclusters (MNCs) with a tripolymer coating displayed high water dispersibility, efficient cellular uptake, and the cationic groups of CTS and bPEI were effective for RB loading through electrostatic interaction. The encapsulation efficiency of RB in MNCs could be further improved by increasing the amount of short bPEI chains. During the photodynamic process, controlled release of the host molecules (i.e., RB) or guest molecules (i.e., paclitaxel) from the bPEI-based nanoplatform was achieved simultaneously through a photooxidation action sensitized by RB. This approach promises specific payload release and highly effective PDT or PDT combined therapy in various cancer cell lines including breast (MCF-7 and multidrug resistant MCF-7 subline), SKOV-3 ovarian, and Tramp-C1 prostate. In in vivo xenograft studies, the nanoengineered light-switchable carrier also greatly augments its PDT efficacy against multidrug resistant MCF-7/MDR tumor as compared with free drugs. All the above findings suggest that the substantial effects of enhanced drug distribution for efficient cancer therapy was achieved with this smart nanocarrier capable of on demand drug release and delivery, thus exerting its therapeutic activity to a greater extent.


Assuntos
Liberação Controlada de Fármacos , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Humanos , Masculino , Nanopartículas , Fotoquimioterapia , Rosa Bengala
7.
Front Chem ; 6: 647, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30687694

RESUMO

Dual functional drug carrier has been a modern strategy in cancer therapy because it is a platform to elicit additive and synergistic effects through combination therapy. Photo-activated external stimuli such as reactive oxygen species (ROS) also ensure adequate drug delivery in a precise temporal and spatial manner. However, current ROS-responsive drug delivery systems usually require tedious synthetic procedures. A facile one-pot approach has been reported herein, to obtain self-assembled polymeric nanocarriers (NCs) for simultaneous paclitaxel (PTX)- and Rose Bengal (RB)-loading to achieve combined chemo-photodynamic therapy and controlled drug release in responsive to a light-induced ROS stimulus. To encapsulate these hydrophobic and hydrophilic drugs, chitosan (CTS), branched polyethylenimine (bPEI) and polyvinyl alcohol (PVA) were selected and fabricated into nanoblended matrices through an oil-in-water emulsion method. The amphiphilic properties of CTS permit simultaneous entrapment of PTX and RB, while the encapsulation efficiency of RB was further improved by increasing the amount of short-chain bPEI. During the one-step assembly process, bovine serum albumin (BSA) was also added to condense the cationic tripolymer mixtures into more stable nanocarriers (BNCs). Hyaluronic acid (HA) was subsequently grafted onto the surface of BNCs through electrostatic interaction, leading to the formation of HA-BSA/CTS/PVA/bPEI-blended nanocarriers (HBNCs) to achieve an efficient prostate-cancer-cell uptake. Importantly, in response to external light irradiation, HBNCs become destabilized owing to the RB-mediated photodynamic action. It allows an on-demand dual-payload release to evoke a simultaneous photodynamic and chemo treatment for cancer cell eradication. Thus, HBNCs present a new promising approach that exhibits a specific vulnerability to RB-induced photosensitization. The consequent dual-cargo release is also expected to successfully combat cancer through a synergistic anti-tumor effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...