Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Discov ; 14(2): 227-239, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37916958

RESUMO

PIK3CA mutations occur in ∼8% of cancers, including ∼40% of HR-positive breast cancers, where the PI3K-alpha (PI3Kα)-selective inhibitor alpelisib is FDA approved in combination with fulvestrant. Although prior studies have identified resistance mechanisms, such as PTEN loss, clinically acquired resistance to PI3Kα inhibitors remains poorly understood. Through serial liquid biopsies and rapid autopsies in 39 patients with advanced breast cancer developing acquired resistance to PI3Kα inhibitors, we observe that 50% of patients acquire genomic alterations within the PI3K pathway, including PTEN loss and activating AKT1 mutations. Notably, although secondary PIK3CA mutations were previously reported to increase sensitivity to PI3Kα inhibitors, we identified emergent secondary resistance mutations in PIK3CA that alter the inhibitor binding pocket. Some mutations had differential effects on PI3Kα-selective versus pan-PI3K inhibitors, but resistance induced by all mutations could be overcome by the novel allosteric pan-mutant-selective PI3Kα-inhibitor RLY-2608. Together, these findings provide insights to guide strategies to overcome resistance in PIK3CA-mutated cancers. SIGNIFICANCE: In one of the largest patient cohorts analyzed to date, this study defines the clinical landscape of acquired resistance to PI3Kα inhibitors. Genomic alterations within the PI3K pathway represent a major mode of resistance and identify a novel class of secondary PIK3CA resistance mutations that can be overcome by an allosteric PI3Kα inhibitor. See related commentary by Gong and Vanhaesebroeck, p. 204 . See related article by Varkaris et al., p. 240 . This article is featured in Selected Articles from This Issue, p. 201.


Assuntos
Neoplasias da Mama , Fosfatidilinositol 3-Quinases , Humanos , Feminino , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Fulvestranto , Inibidores de Fosfoinositídeo-3 Quinase , Classe I de Fosfatidilinositol 3-Quinases/genética , Mutação
2.
J Bioenerg Biomembr ; 50(1): 1-10, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29426977

RESUMO

Lipid biosensors are robust tools used in both in vitro and in vivo applications of lipid imaging and lipid detection. Lactadherin C2 (LactC2) was described in 2000 as being a potent and specific sensor for phosphatidylserine (PS) (Andersen et al. Biochemistry 39:6200-6206, 2000). PS is an anionic phospholipid enriched in the inner leaflet of the plasma membrane and has paramount roles in apoptosis, cells signaling, and autophagy. The myriad roles PS plays in membrane dynamics make monitoring PS levels and function an important endeavor. LactC2 has functioned as a tantamount PS biosensor namely in the field of cellular imaging. While PS specificity and high affinity of LactC2 for PS containing membranes has been well established, much less is known regarding LactC2 selectivity for subcellular pools of PS or PS within different membrane environments (e.g., in the presence of cholesterol). Thus, there has been a lack of studies that have compared LactC2 PS sensitivity based upon the acyl chain length and saturation or the presence of other host lipids such as cholesterol. Here, we use surface plasmon resonance as a label-free method to quantitatively assess the apparent binding affinity of LactC2 for membranes containing PS with different acyl chains, different fluidity, as well as representative lipid vesicle mimetics of cellular membranes. Results demonstrate that LactC2 is an unbiased sensor for PS, and can sensitively interact with membranes containing PS with different acyl chain saturation and interact with PS species in a cholesterol-independent manner.


Assuntos
Técnicas Biossensoriais/métodos , Membrana Celular/química , Membranas Artificiais , Proteínas do Leite/metabolismo , Fosfatidilserinas/análise , Animais , Bovinos , Diagnóstico por Imagem , Humanos , Fosfatidilserinas/síntese química , Fosfatidilserinas/metabolismo , Ligação Proteica , Ressonância de Plasmônio de Superfície
3.
J Biol Chem ; 293(9): 3335-3349, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29348171

RESUMO

Ebola virus (EBOV) is a filamentous lipid-enveloped virus that causes hemorrhagic fever with a high fatality rate. Viral protein 40 (VP40) is the major EBOV matrix protein and regulates viral budding from the plasma membrane. VP40 is a transformer/morpheein that can structurally rearrange its native homodimer into either a hexameric filament that facilitates viral budding or an RNA-binding octameric ring that regulates viral transcription. VP40 associates with plasma-membrane lipids such as phosphatidylserine (PS), and this association is critical to budding from the host cell. However, it is poorly understood how different VP40 structures interact with PS, what essential residues are involved in this association, and whether VP40 has true selectivity for PS among different glycerophospholipid headgroups. In this study, we used lipid-binding assays, MD simulations, and cellular imaging to investigate the molecular basis of VP40-PS interactions and to determine whether different VP40 structures (i.e. monomer, dimer, and octamer) can interact with PS-containing membranes. Results from quantitative analysis indicated that VP40 associates with PS vesicles via a cationic patch in the C-terminal domain (Lys224, 225 and Lys274, 275). Substitutions of these residues with alanine reduced PS-vesicle binding by >40-fold and abrogated VP40 localization to the plasma membrane. Dimeric VP40 had 2-fold greater affinity for PS-containing membranes than the monomer, whereas binding of the VP40 octameric ring was reduced by nearly 10-fold. Taken together, these results suggest the different VP40 structures known to form in the viral life cycle harbor different affinities for PS-containing membranes.


Assuntos
Ebolavirus/metabolismo , Fosfatidilserinas/metabolismo , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/metabolismo , Membrana Celular/metabolismo , Ebolavirus/fisiologia , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Estrutura Quaternária de Proteína , Transporte Proteico , Especificidade por Substrato , Proteínas da Matriz Viral/genética
4.
Methods Mol Biol ; 1376: 141-53, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26552681

RESUMO

Surface Plasmon Resonance (SPR) is a quantitative, label-free method for determining molecular interactions in real time. The technology involves fixing a ligand onto a senor chip, measuring a baseline resonance angle, and flowing an analyte in bulk solution over the fixed ligand to measure the subsequent change in resonance angle. The mass of analyte bound to fixed ligand is directly proportional to the resonance angle change and the system is sensitive enough to detect as little as picomolar amounts of analyte in the bulk solution. SPR can be used to determine both the specificity of molecular interactions and the kinetics and affinity of an interaction. This technique has been especially useful in measuring the affinities of lipid-binding proteins to intact liposomes of varying lipid compositions.


Assuntos
Lipídeos/química , Proteínas/química , Ressonância de Plasmônio de Superfície/métodos , Cinética , Ligação Proteica , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...