Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Biomed Anal ; 217: 114823, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35576733

RESUMO

With the ever-growing abundance of complex therapeutic proteins reaching clinical trials and post-marketing, it is vital to develop highly accurate and robust bioanalytical methods for their quantitative analysis in matrices, to support clinical trial data as well as therapeutic drug monitoring. In bioanalysis, proteins have traditionally been evaluated using ligand binding assays (LBAs). However, in recent years, bottom-up LC-MS/MS methods have begun to gain recognition as an alternative to LBAs in situations where either there is a desire to reduce lengthy development times, or where selectivity issues prevent the immunoassay from reaching the desired outcome. In our study, a microfluidic immunoassay was compared to two bottom-up LC-MS/MS methods, including triple quadrupole and high-resolution mass spectrometry methods. The methods were designed to quantitatively analyze a monoclonal antibody, bevacizumab, and its related fab fragment, ranibizumab, in human plasma after intravitreal administration. All three methods were validated (or cross-validated) according to the 2018 Food and Drug Administration (FDA) guidance, and were then compared by quantitating eighteen patient samples on each platform. The concentrations values obtained from each method were compared using percent variability, as well as Bland-Altman and Pearson Correlation plots, to determine agreeability and linear correlation between methods. Based on the results of the validations and comparison studies, all three methods aligned well with each other. However, the LC-MS/MS methods were able to achieve significantly improve sensitivity, with a lower limit of quantitation (LLOQ) of 0.300 ng/mL, compared to 6.00 ng/mL for the LBA, due to the reduction of interferences at lower concentrations using the LC-MS/MS technique (increased selectivity). Therefore, for this specific study, we were able to establish the correlation between methods, while also demonstrating increased value in using LC-MS/MS as an alternative approach to LBAs in bioanalysis.


Assuntos
Ranibizumab , Espectrometria de Massas em Tandem , Anticorpos Monoclonais , Bevacizumab , Cromatografia Líquida/métodos , Humanos , Imunoensaio/métodos , Microfluídica , Preparações Farmacêuticas , Espectrometria de Massas em Tandem/métodos
2.
Anal Bioanal Chem ; 414(14): 4189-4202, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35451621

RESUMO

Ranibizumab is an FDA-approved drug used to treat wet age-related macular degeneration (AMD), diabetic retinopathy, macular edema, and myopic choroidal neovascularization. Bevacizumab is another drug often used off-label to treat wet AMD. In order to reduce unwanted angiogenesis, ranibizumab and bevacizumab target circulating VEGF-A in the eye. Concentration levels in human vitreous and aqueous humor can be used to provide valuable efficacy information. However, vitreous and aqueous humor's aqueous environment, and vitreous humor's viscosity, as well as the stickiness of the analytes can provide bioanalytical challenges. In this manuscript, we describe the development, optimization, and fit-for-purpose validation of an LC-HRMS method designed for intact quantitative bioanalysis of ranibizumab and bevacizumab in human vitreous and aqueous humor following intravitreal administration. In order to fully develop this method, evaluations were conducted to optimize the conditions, including the data processing model (extracted ion chromatograms (XICs) vs deconvolution), carryover mitigation, sample preparation scheme optimization for surrogate and primary matrices, use of internal standard/immunocapture/deglycosylation, and optimization of the extraction and dilution procedure, as well as optimization of the liquid chromatography and mass spectrometry conditions. Once the method was fully optimized, a fit-for-purpose validation was conducted, including matrix parallelism, with a linear calibration range of 10 to 200 µg/mL. The development of this intact quantitative method using LC-HRMS provides a proof-of-concept template for challenging, but valuable new and exciting bioanalytical techniques.


Assuntos
Humor Aquoso , Ranibizumab , Inibidores da Angiogênese/uso terapêutico , Anticorpos Monoclonais , Bevacizumab , Humanos , Fragmentos Fab das Imunoglobulinas , Ranibizumab/uso terapêutico , Fator A de Crescimento do Endotélio Vascular , Corpo Vítreo
3.
Artigo em Inglês | MEDLINE | ID: mdl-33508760

RESUMO

As biologic based drugs become an increasingly important sector of the pharmaceutical industry, accurate and precision techniques for bioanalysis are required to support clinical trials and beyond. Ranibizumab, a fab therapeutic, is an FDA approved drug to treat wet age-related macular degeneration (AMD), as well as other eye related diseases. Ranibizumab's mAb counterpart, bevacizumab, is often also used off-label to treat wet AMD. Ranibizumab and bevacizumab target circulating VEGF-A in the eye, reducing unwanted angiogenesis. Since these drugs are designed for local intravitreal administration, concentration levels in human plasma are expected to be significantly lower compared to vitreous fluid concentrations, presenting bioanalytical challenges. However, this is important for assessment of drug toxicity. In this manuscript, we describe the development, optimization, and validation of an LC-MS/MS method designed for quantitative bioanalysis of ranibizumab and bevacizumab in human plasma following intravitreal administration. In order to fully develop this method, evaluations were conducted to optimize the conditions, including selection of the surrogate peptide by in-silico experiments, optimizations of the immunocapture, denaturation, reduction, alkylation, and digestion extraction steps, as well as optimization of the LC-MS/MS conditions, and evaluation of a dissociation step to determine if there was interference from VEGF or ADAs. Once the method was fully optimized, it was then validated, following the 2018 FDA guidance on bioanalytical method validations. This method is now available for use during clinical trials and precision medicine, for the quantitative evaluation of systemic exposure of ranibizumab or bevacizumab in human plasma after intravitreal administration, with a linear calibration range of 0.300-100 ng/mL.


Assuntos
Anticorpos Monoclonais/sangue , Cromatografia Líquida/métodos , Fragmentos Fab das Imunoglobulinas/sangue , Espectrometria de Massas em Tandem/métodos , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/farmacocinética , Humanos , Injeções Intravítreas , Limite de Detecção , Modelos Lineares , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...