Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38717443

RESUMO

RATIONALE: Changes in peripheral blood cell populations have been observed but not detailed at single-cell resolution in idiopathic pulmonary fibrosis (IPF). OBJECTIVES: To provide an atlas of the changes in the peripheral immune system in stable and progressive IPF. METHODS: Peripheral blood mononuclear cells (PBMCs) from IPF patients and controls were profiled using 10x Chromium 5' single-cell RNA sequencing (scRNA-seq). Flow cytometry was used for validation. Protein concentrations of Regulatory T-cells (Tregs) and Monocytes chemoattractants were measured in plasma and lung homogenates from patients and controls. MEASUREMENTS AND MAIN RESULTS: Thirty-eight PBMC samples from 25 patients with IPF and 13 matched controls yielded 149,564 cells that segregated into 23 subpopulations. Classical monocytes were increased in progressive and stable IPF compared to controls (32.1%, 25.2%, 17.9%, respectively, p<0.05). Total lymphocytes were decreased in IPF vs controls, and in progressive vs stable IPF (52.6% vs 62.6%, p=0.035). Tregs were increased in progressive vs stable IPF (1.8% vs 1.1% of all PBMC, p=0.007), although not different than controls, and may be associated with decreased survival (P=0.009 in Kaplan-Meier analysis; P=0.069 after adjusting for age, sex, and baseline FVC). Flow cytometry analysis confirmed this finding in an independent cohort of IPF patients. Fraction of Tregs out of all T cells was also increased in two cohorts of lung scRNA-seq. CCL22 and CCL18, ligands for CCR4 and CCR8 Treg chemotaxis receptors, were increased in IPF. CONCLUSIONS: The single-cell atlas of the peripheral immune system in IPF, reveals an outcome-predictive increase in classical monocytes and Tregs, as well as evidence for a lung-blood immune recruitment axis involving CCL7 (for classical monocytes) and CCL18/CCL22 (for Tregs).

2.
Proc Natl Acad Sci U S A ; 121(18): e2319566121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38648490

RESUMO

Respiratory virus infections in humans cause a broad-spectrum of diseases that result in substantial morbidity and mortality annually worldwide. To reduce the global burden of respiratory viral diseases, preventative and therapeutic interventions that are accessible and effective are urgently needed, especially in countries that are disproportionately affected. Repurposing generic medicine has the potential to bring new treatments for infectious diseases to patients efficiently and equitably. In this study, we found that intranasal delivery of neomycin, a generic aminoglycoside antibiotic, induces the expression of interferon-stimulated genes (ISGs) in the nasal mucosa that is independent of the commensal microbiota. Prophylactic or therapeutic administration of neomycin provided significant protection against upper respiratory infection and lethal disease in a mouse model of COVID-19. Furthermore, neomycin treatment protected Mx1 congenic mice from upper and lower respiratory infections with a highly virulent strain of influenza A virus. In Syrian hamsters, neomycin treatment potently mitigated contact transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In healthy humans, intranasal application of neomycin-containing Neosporin ointment was well tolerated and effective at inducing ISG expression in the nose in a subset of participants. These findings suggest that neomycin has the potential to be harnessed as a host-directed antiviral strategy for the prevention and treatment of respiratory viral infections.


Assuntos
Administração Intranasal , Antivirais , Neomicina , SARS-CoV-2 , Animais , Neomicina/farmacologia , Neomicina/administração & dosagem , Camundongos , Humanos , Antivirais/farmacologia , Antivirais/administração & dosagem , SARS-CoV-2/imunologia , SARS-CoV-2/efeitos dos fármacos , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Infecções Respiratórias/imunologia , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/virologia , Infecções Respiratórias/prevenção & controle , Mucosa Nasal/imunologia , Mucosa Nasal/virologia , Mucosa Nasal/efeitos dos fármacos , Modelos Animais de Doenças , Tratamento Farmacológico da COVID-19 , Mesocricetus , Feminino , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/imunologia
3.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L551-L561, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38375579

RESUMO

Excessive or persistent inflammation may have detrimental effects on lung structure and function. Currently, our understanding of conserved host mechanisms that control the inflammatory response remains incompletely understood. In this study, we investigated the role of type I interferon signaling in the inflammatory response against diverse clinically relevant stimuli. Using mice deficient in type I interferon signaling (IFNAR1-/-), we demonstrate that the absence of interferon signaling resulted in a robust and persistent inflammatory response against Pseudomonas aeruginosa, lipopolysaccharide, and chemotherapeutic agent bleomycin. The elevated inflammatory response in IFNAR1-/- mice was manifested as elevated myeloid cells, such as macrophages and neutrophils, in the bronchoalveolar lavage. The inflammatory cell response in the IFNAR1-/- mice persisted to 14 days and there is impaired recovery and fibrotic remodeling of the lung in IFNAR1-/- mice after bleomycin injury. In the Pseudomonas infection model, the elevated inflammatory cell response led to improved bacterial clearance in IFNAR1-/- mice, although there was similar lung injury and survival. We performed RNA sequencing of lung tissue in wild-type and IFNAR1-/- mice after LPS and bleomycin injury. Our unbiased analysis identified differentially expressed genes between IFNAR1-/- and wild-type mice, including previously unknown regulation of nucleotide-binding oligomerization domain (NOD)-like receptor signaling, retinoic acid-inducible gene-I (RIG-I) signaling, and necroptosis pathway by type I interferon signaling in both models. These data provide novel insights into the conserved anti-inflammatory mechanisms of the type I interferon signaling.NEW & NOTEWORTHY Type I interferons are known for their antiviral activities. In this study, we demonstrate a conserved anti-inflammatory role of type I interferon signaling against diverse stimuli in the lung. We show that exacerbated inflammatory response in the absence of type I interferon signaling has both acute and chronic consequences in the lung including structural changes.


Assuntos
Interferon Tipo I , Pulmão , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Interferon alfa e beta , Transdução de Sinais , Animais , Interferon Tipo I/metabolismo , Pulmão/metabolismo , Pulmão/imunologia , Pulmão/patologia , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Camundongos , Bleomicina , Pseudomonas aeruginosa , Lipopolissacarídeos/farmacologia , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/patologia , Infecções por Pseudomonas/microbiologia , Inflamação/metabolismo , Inflamação/patologia , Inflamação/imunologia , Masculino
4.
Am J Respir Cell Mol Biol ; 70(5): 379-391, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38301257

RESUMO

GDF15 (growth differentiation factor 15) is a stress cytokine with several proposed roles, including support of stress erythropoiesis. Higher circulating GDF15 levels are prognostic of mortality during acute respiratory distress syndrome, but the cellular sources and downstream effects of GDF15 during pathogen-mediated lung injury are unclear. We quantified GDF15 in lower respiratory tract biospecimens and plasma from patients with acute respiratory failure. Publicly available data from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection were reanalyzed. We used mouse models of hemorrhagic acute lung injury mediated by Pseudomonas aeruginosa exoproducts in wild-type mice and mice genetically deficient for Gdf15 or its putative receptor, Gfral. In critically ill humans, plasma levels of GDF15 correlated with lower respiratory tract levels and were higher in nonsurvivors. SARS-CoV-2 infection induced GDF15 expression in human lung epithelium, and lower respiratory tract GDF15 levels were higher in coronavirus disease (COVID-19) nonsurvivors. In mice, intratracheal P. aeruginosa type II secretion system exoproducts were sufficient to induce airspace and plasma release of GDF15, which was attenuated with epithelial-specific deletion of Gdf15. Mice with global Gdf15 deficiency had decreased airspace hemorrhage, an attenuated cytokine profile, and an altered lung transcriptional profile during injury induced by P. aeruginosa type II secretion system exoproducts, which was not recapitulated in mice deficient for Gfral. Airspace GDF15 reconstitution did not significantly modulate key lung cytokine levels but increased circulating erythrocyte counts. Lung epithelium releases GDF15 during pathogen injury, which is associated with plasma levels in humans and mice and can increase erythrocyte counts in mice, suggesting a novel lung-blood communication pathway.


Assuntos
COVID-19 , Fator 15 de Diferenciação de Crescimento , Pulmão , Pseudomonas aeruginosa , SARS-CoV-2 , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/metabolismo , Animais , COVID-19/metabolismo , COVID-19/virologia , Humanos , Camundongos , Pulmão/metabolismo , Pulmão/patologia , Pulmão/virologia , Masculino , Infecções por Pseudomonas/metabolismo , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/metabolismo , Feminino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Modelos Animais de Doenças
5.
Viruses ; 16(2)2024 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-38400083

RESUMO

Cytokines are signaling molecules that play a role in myriad processes, including those occurring during diseases and homeostasis. Their homeostatic function begins during embryogenesis and persists throughout life, including appropriate signaling for the cell and organism death. During viral infections, antiviral cytokines such as interferons and inflammatory cytokines are upregulated. Despite the well-known benefits of these cytokines, their levels often correlate with disease severity, linking them to unfavorable outcomes. In this review, we discuss both the beneficial and pathological functions of cytokines and the potential challenges in separating these two roles. Further, we discuss challenges in targeting these cytokines during disease and propose a new method for quantifying the cytokine effect to limit the pathological consequences while preserving their beneficial effects.


Assuntos
COVID-19 , Influenza Humana , Humanos , Citocinas , SARS-CoV-2 , Interferons
6.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L627-L637, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38375577

RESUMO

Pulmonary function testing (PFT) in mice includes biomechanical assessment of lung function relevant to physiology in health and its alteration in disease, hence, it is frequently used in preclinical modeling of human lung pathologies. Despite numerous reports of PFT in mice of various ages, there is a lack of reference data for developing mice collected using consistent methods. Therefore, we profiled PFTs in male and female C57BL/6J mice from 2 to 23 wk of age, providing reference values for age- and sex-dependent changes in mouse lung biomechanics during development and young adulthood. Although males and females have similar weights at birth, females weigh significantly less than males after 5 wk of age (P < 0.001) with largest weight gain observed between 3 and 8 wk in females and 3 and 13 wk in males, after which weight continued to increase more slowly up to 23 wk of age. Lung function parameters including static compliance and inspiratory capacity also increased rapidly between 3 and 8 wk in female and male mice, with male mice having significantly greater static compliance and inspiratory capacity than female mice (P < 0.001). Although these parameters appear higher in males at a given age, allometric scaling showed that static compliance and inspiratory compliance were comparable between the two sexes. This suggests that differences in measurements of lung function are likely body weight-based rather than sex-based. We expect these data to facilitate future lung disease research by filling a critical knowledge gap in our field.NEW & NOTEWORTHY This study provides reference values for changes in mouse lung biomechanics from 2 to 23 wk of age. There are rapid developmental changes in lung structure and function of male and female mice between the ages of 3 and 8 wk. Male mice become noticeably heavier than female mice at or about 5 wk of age. We identified that differences in normal lung function measurements are likely weight-based, not sex-based.


Assuntos
Pulmão , Camundongos Endogâmicos C57BL , Testes de Função Respiratória , Animais , Feminino , Masculino , Pulmão/crescimento & desenvolvimento , Camundongos , Peso Corporal , Caracteres Sexuais , Fatores Sexuais , Envelhecimento/fisiologia
8.
medRxiv ; 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37808745

RESUMO

Critical illness can disrupt the composition and function of the microbiome, yet comprehensive longitudinal studies are lacking. We conducted a longitudinal analysis of oral, lung, and gut microbiota in a large cohort of 479 mechanically ventilated patients with acute respiratory failure. Progressive dysbiosis emerged in all three body compartments, characterized by reduced alpha diversity, depletion of obligate anaerobe bacteria, and pathogen enrichment. Clinical variables, including chronic obstructive pulmonary disease, immunosuppression, and antibiotic exposure, shaped dysbiosis. Notably, of the three body compartments, unsupervised clusters of lung microbiota diversity and composition independently predicted survival, transcending clinical predictors, organ dysfunction severity, and host-response sub-phenotypes. These independent associations of lung microbiota may serve as valuable biomarkers for prognostication and treatment decisions in critically ill patients. Insights into the dynamics of the microbiome during critical illness highlight the potential for microbiota-targeted interventions in precision medicine.

9.
Nature ; 623(7985): 139-148, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37748514

RESUMO

Post-acute infection syndromes may develop after acute viral disease1. Infection with SARS-CoV-2 can result in the development of a post-acute infection syndrome known as long COVID. Individuals with long COVID frequently report unremitting fatigue, post-exertional malaise, and a variety of cognitive and autonomic dysfunctions2-4. However, the biological processes that are associated with the development and persistence of these symptoms are unclear. Here 275 individuals with or without long COVID were enrolled in a cross-sectional study that included multidimensional immune phenotyping and unbiased machine learning methods to identify biological features associated with long COVID. Marked differences were noted in circulating myeloid and lymphocyte populations relative to the matched controls, as well as evidence of exaggerated humoral responses directed against SARS-CoV-2 among participants with long COVID. Furthermore, higher antibody responses directed against non-SARS-CoV-2 viral pathogens were observed among individuals with long COVID, particularly Epstein-Barr virus. Levels of soluble immune mediators and hormones varied among groups, with cortisol levels being lower among participants with long COVID. Integration of immune phenotyping data into unbiased machine learning models identified the key features that are most strongly associated with long COVID status. Collectively, these findings may help to guide future studies into the pathobiology of long COVID and help with developing relevant biomarkers.


Assuntos
Anticorpos Antivirais , Herpesvirus Humano 4 , Hidrocortisona , Linfócitos , Células Mieloides , Síndrome de COVID-19 Pós-Aguda , SARS-CoV-2 , Humanos , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Biomarcadores/sangue , Estudos Transversais , Herpesvirus Humano 4/imunologia , Hidrocortisona/sangue , Imunofenotipagem , Linfócitos/imunologia , Aprendizado de Máquina , Células Mieloides/imunologia , Síndrome de COVID-19 Pós-Aguda/diagnóstico , Síndrome de COVID-19 Pós-Aguda/imunologia , Síndrome de COVID-19 Pós-Aguda/fisiopatologia , Síndrome de COVID-19 Pós-Aguda/virologia , SARS-CoV-2/imunologia
10.
JCI Insight ; 8(18)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737266

RESUMO

Acute lung injury (ALI) and its most severe form, acute respiratory distress syndrome (ARDS), cause severe endothelial dysfunction in the lung, and vascular endothelial growth factor (VEGF) is elevated in ARDS. We found that the levels of a VEGF-regulated microRNA, microRNA-1 (miR-1), were reduced in the lung endothelium after acute injury. Pulmonary endothelial cell-specific (EC-specific) overexpression of miR-1 protected the lung against cell death and barrier dysfunction in both murine and human models and increased the survival of mice after pneumonia-induced ALI. miR-1 had an intrinsic protective effect in pulmonary and other types of ECs; it inhibited apoptosis and necroptosis pathways and decreased capillary leak by protecting adherens and tight junctions. Comparative gene expression analysis and RISC recruitment assays identified miR-1 targets in the context of injury, including phosphodiesterase 5A (PDE5A), angiopoietin-2 (ANGPT2), CNKSR family member 3 (CNKSR3), and TNF-α-induced protein 2 (TNFAIP2). We validated miR-1-mediated regulation of ANGPT2 in both mouse and human ECs and found that in a 119-patient pneumonia cohort, miR-1 correlated inversely with ANGPT2. These findings illustrate a previously unknown role of miR-1 as a cytoprotective orchestrator of endothelial responses to acute injury with prognostic and therapeutic potential.


Assuntos
Lesão Pulmonar Aguda , MicroRNAs , Síndrome do Desconforto Respiratório , Humanos , Animais , Camundongos , MicroRNAs/genética , Fator A de Crescimento do Endotélio Vascular , Lesão Pulmonar Aguda/genética , Síndrome do Desconforto Respiratório/genética , Endotélio
12.
Invest Radiol ; 58(12): 882-893, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37493348

RESUMO

OBJECTIVES: The aim of this study was to evaluate the severity of COVID-19 patients' disease by comparing a multiclass lung lesion model to a single-class lung lesion model and radiologists' assessments in chest computed tomography scans. MATERIALS AND METHODS: The proposed method, AssessNet-19, was developed in 2 stages in this retrospective study. Four COVID-19-induced tissue lesions were manually segmented to train a 2D-U-Net network for a multiclass segmentation task followed by extensive extraction of radiomic features from the lung lesions. LASSO regression was used to reduce the feature set, and the XGBoost algorithm was trained to classify disease severity based on the World Health Organization Clinical Progression Scale. The model was evaluated using 2 multicenter cohorts: a development cohort of 145 COVID-19-positive patients from 3 centers to train and test the severity prediction model using manually segmented lung lesions. In addition, an evaluation set of 90 COVID-19-positive patients was collected from 2 centers to evaluate AssessNet-19 in a fully automated fashion. RESULTS: AssessNet-19 achieved an F1-score of 0.76 ± 0.02 for severity classification in the evaluation set, which was superior to the 3 expert thoracic radiologists (F1 = 0.63 ± 0.02) and the single-class lesion segmentation model (F1 = 0.64 ± 0.02). In addition, AssessNet-19 automated multiclass lesion segmentation obtained a mean Dice score of 0.70 for ground-glass opacity, 0.68 for consolidation, 0.65 for pleural effusion, and 0.30 for band-like structures compared with ground truth. Moreover, it achieved a high agreement with radiologists for quantifying disease extent with Cohen κ of 0.94, 0.92, and 0.95. CONCLUSIONS: A novel artificial intelligence multiclass radiomics model including 4 lung lesions to assess disease severity based on the World Health Organization Clinical Progression Scale more accurately determines the severity of COVID-19 patients than a single-class model and radiologists' assessment.


Assuntos
COVID-19 , Humanos , Inteligência Artificial , Estudos Retrospectivos , Pulmão/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Progressão da Doença
13.
medRxiv ; 2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37163015

RESUMO

Rationale: Changes in peripheral blood cell populations have been observed but not detailed at single-cell resolution in idiopathic pulmonary fibrosis (IPF). Objectives: To provide an atlas of the changes in the peripheral immune system in stable and progressive IPF. Methods: Peripheral blood mononuclear cells (PBMCs) from IPF patients and controls were profiled using 10x Chromium 5' single-cell RNA sequencing (scRNA-seq). Flow cytometry was used for validation. Protein concentrations of Regulatory T-cells (Tregs) and Monocytes chemoattractants were measured in plasma and lung homogenates from patients and controls. Measurements and Main Results: Thirty-eight PBMC samples from 25 patients with IPF and 13 matched controls yielded 149,564 cells that segregated into 23 subpopulations, corresponding to all expected peripheral blood cell populations. Classical monocytes were increased in progressive and stable IPF compared to controls (32.1%, 25.2%, 17.9%, respectively, p<0.05). Total lymphocytes were decreased in IPF vs controls, and in progressive vs stable IPF (52.6% vs 62.6%, p=0.035). Tregs were increased in progressive IPF (1.8% vs 1.1%, p=0.007), and were associated with decreased survival (P=0.009 in Kaplan-Meier analysis). Flow cytometry analysis confirmed this finding in an independent cohort of IPF patients. Tregs were also increased in two cohorts of lung scRNA-seq. CCL22 and CCL18, ligands for CCR4 and CCR8 Treg chemotaxis receptors, were increased in IPF. Conclusions: The single-cell atlas of the peripheral immune system in IPF, reveals an outcome-predictive increase in classical monocytes and Tregs, as well as evidence for a lung-blood immune recruitment axis involving CCL7 (for classical monocytes) and CCL18/CCL22 (for Tregs).

14.
ERJ Open Res ; 9(2)2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37009016

RESUMO

Rationale: Nontuberculous mycobacterial (NTM) diseases are difficult-to-treat infections, especially in lung transplant (LTx) candidates. Currently, there is a paucity of recommendations on the management of NTM infections in LTx, focusing on Mycobacterium avium complex (MAC), M. abscessus and M. kansasii. Methods: Pulmonologists, infectious disease specialists, LTx surgeons and Delphi experts with expertise in NTM were recruited. A patient representative was also invited. Three questionnaires comprising questions with multiple response statements were distributed to panellists. Delphi methodology with a Likert scale of 11 points (5 to -5) was applied to define the agreement between experts. Responses from the first two questionnaires were collated to develop a final questionnaire. The consensus was described as a median rating >4 or <-4 indicating for or against the given statement. After the last round of questionnaires, a cumulative report was generated. Results: Panellists recommend performing sputum cultures and a chest computed tomography scan for NTM screening in LTx candidates. Panellists recommend against absolute contraindication to LTx even with multiple positive sputum cultures for MAC, M. abscessus or M. kansasii. Panellists recommend MAC patients on antimicrobial treatment and culture negative can be listed for LTx without further delay. Panellists recommend 6 months of culture-negative for M. kansasii, but 12 months of further treatment from the time of culture-negative for M. abscessus before listing for LTx. Conclusion: This NTM LTx study consensus statement provides essential recommendations for NTM management in LTx and can be utilised as an expert opinion while awaiting evidence-based contributions.

15.
Yale J Biol Med ; 96(1): 23-42, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37009190

RESUMO

Objective: We aim to comprehensively describe the transcriptional activity and signaling of pulmonary parenchymal and immune cells before and after cardiopulmonary bypass (CPB) by using a multi-omic approach coupled with functional cellular assays. We hypothesize that key signaling pathways from specific cells within the lung alter pulmonary endothelial cell function resulting in worsening or improving disease. Methods: We collected serial tracheobronchial lavage samples from intubated patients less than 2-years-old undergoing surgery with CPB. Samples were immediately processed for single cell RNA sequencing (10x Genomics). Cell clustering, cell-type annotation, and visualization were performed, and differentially expressed genes (DEG) between serial samples were identified. Metabolomic and proteomic analyses were performed on the supernatant using mass spectrometry and a multiplex assay (SomaScan) respectively. Functional assays were done using electric cell-substrate impedance sensing to measure resistance across human pulmonary microvascular endothelial cells (HPMECs). Results: Analysis of eight patients showed a heterogeneous mixture of pulmonary parenchymal and immune cells. Cell clustering demonstrated time-dependent changes in the transcriptomic signature indicating altered cellular phenotypes after CPB. DEG analysis was represented by genes involved in host defense, innate immunity, and the mitochondrial respiratory transport chain. Ingenuity pathway analysis showed upregulation of the integrated stress response across all cell types after CPB. Metabolomic analysis demonstrated upregulation of ascorbate and aldarate metabolism. Unbiased proteomic analysis revealed upregulation of proteins involved in cytokine and chemokine pathways. Post-CPB patient supernatant improved HMPEC barrier function, suggesting a protective cellular response to CPB. Conclusion: Children who undergo CPB for cardiac surgery have distinct cell populations, transcriptional activity, and metabolism that change over time. The response to ischemia-reperfusion injury in the lower airway of children appears to be protective, with the need to identify potential targets through future investigations.


Assuntos
Ponte Cardiopulmonar , Células Endoteliais , Criança , Humanos , Pré-Escolar , Ponte Cardiopulmonar/efeitos adversos , Ponte Cardiopulmonar/métodos , Permeabilidade Capilar , Proteômica , Pulmão/irrigação sanguínea , Pulmão/metabolismo
16.
Clin Chest Med ; 44(2): 299-319, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37085221

RESUMO

Morbidity and mortality from COVID-19 is due to severe inflammation and end-organ damage caused by a hyperinflammatory response. Multiple immunomodulatory agents to attenuate this response have been studied. Corticosteroids, specifically dexamethasone, have been shown to reduce mortality in hospitalized patients who require supplemental oxygen. Interleukin-6 antagonist, tocilizimab, and Janus kinase inhibitors have also been shown to reduce mortality. However, patients who have severe pulmonary end-organ damage requiring mechanical ventilation or extracorporeal membrane oxygenation appear not to benefit from immunomodulatory therapies. This highlights the importance of appropriate timing to initiate immunomodulatory therapies in the management of severe COVID-19 disease.


Assuntos
COVID-19 , Pneumonia , Humanos , Agentes de Imunomodulação , SARS-CoV-2 , Pulmão
17.
Clin Chest Med ; 44(2): 407-423, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37085229

RESUMO

Although coronavirus disease 2019 (COVID-19) remains an ongoing threat, concerns regarding other respiratory infections remain. Throughout the COVID-19 pandemic various epidemiologic trends have been observed in other respiratory viruses including a reduction in influenza and respiratory syncytial virus infections following onset of the COVID-19 pandemic. Observations suggest that infections with other respiratory viruses were reduced with social distancing, mask wearing, eye protection, and hand hygiene practices. Coinfections with COVID-19 exist not only with other respiratory viruses but also with bacterial pneumonias and other nosocomial and opportunistic infections. Coinfections have been associated with increased severity of illness and other adverse outcomes.


Assuntos
COVID-19 , Coinfecção , Influenza Humana , Infecções Respiratórias , Humanos , COVID-19/prevenção & controle , Pandemias/prevenção & controle , Coinfecção/epidemiologia , Influenza Humana/epidemiologia
18.
Clin Chest Med ; 44(2): xiii-xiv, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37085232

Assuntos
COVID-19 , Humanos
19.
Ann Am Thorac Soc ; 20(3): 341-353, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36856712

RESUMO

Pneumonia imposes a significant clinical burden on people with immunocompromising conditions. Millions of individuals live with compromised immunity because of cytotoxic cancer treatments, biological therapies, organ transplants, inherited and acquired immunodeficiencies, and other immune disorders. Despite broad awareness among clinicians that these patients are at increased risk for developing infectious pneumonia, immunocompromised people are often excluded from pneumonia clinical guidelines and treatment trials. The absence of a widely accepted definition for immunocompromised host pneumonia is a significant knowledge gap that hampers consistent clinical care and research for infectious pneumonia in these vulnerable populations. To address this gap, the American Thoracic Society convened a workshop whose participants had expertise in pulmonary disease, infectious diseases, immunology, genetics, and laboratory medicine, with the goal of defining the entity of immunocompromised host pneumonia and its diagnostic criteria.


Assuntos
Síndrome da Imunodeficiência Adquirida , Transplante de Órgãos , Pneumonia , Humanos , Hospedeiro Imunocomprometido , Sociedades
20.
DNA Cell Biol ; 42(4): 189-193, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36763591

RESUMO

Lysosomes are key organelles that contribute to homeostatic functions such as autophagy-mediated recycling of cellular components and innate immune response through phagocytosis-mediated pathogen killing during infections. Viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has developed unique adaptation to not only avoid lysosome-mediated destruction but also actively utilize lysosomal machinery to both enter and exit cells. To survive the highly hostile lysosomal environment, coronaviruses deacidify the lysosomes, potentially by manipulating H+ ion exchange across the lysosomal lumen, ensuring coronavirus survival. At the same time, this deacidification not only impairs cellular homeostatic functions such as autophagy but also renders the host susceptible to secondary bacterial infections. Furthermore, lysosomal enzymes promote extensive cell death and tissue damage during secondary bacterial infections. Thus, targeting lysosomal pathways provide a great opportunity to limit both viral replication and subsequent negative impact on host immunity against secondary bacterial infections.


Assuntos
Infecções Bacterianas , COVID-19 , Humanos , COVID-19/metabolismo , SARS-CoV-2 , Replicação Viral , Lisossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...