Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 18719, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907581

RESUMO

Bananas hold significant economic importance as an agricultural commodity, serving as a primary livelihood source, a favorite fruit, and a staple crop in various regions across the world. However, Banana bunchy top disease (BBTD), which is caused by banana bunchy top virus (BBTV), poses a considerable threat to banana cultivation. To understand the resistance mechanism and the interplay of host suitability factors in the presence of BBTV, we conducted RNA-seq-based comparative transcriptomics analysis on mock-inoculated and BBTV-inoculated samples from resistant (wild Musa balbisiana) and susceptible (Musa acuminata 'Lakatan') genotypes. We observed common patterns of expression for 62 differentially expressed genes (DEGs) in both genotypes, which represent the typical defense response of bananas to BBTV. Furthermore, we identified 99 DEGs exclusive to the 'Lakatan' banana cultivar, offering insights into the host factors and susceptibility mechanisms that facilitate successful BBTV infection. In parallel, we identified 151 DEGs unique to the wild M. balbisiana, shedding light on the multifaceted mechanisms of BBTV resistance, involving processes such as secondary metabolite biosynthesis, cell wall modification, and pathogen perception. Notably, our validation efforts via RT-qPCR confirmed the up-regulation of the glucuronoxylan 4-O-methyltransferase gene (14.28 fold-change increase), implicated in xylan modification and degradation. Furthermore, our experiments highlighted the potential recruitment of host's substrate adaptor ADO (30.31 fold-change increase) by BBTV, which may play a role in enhancing banana susceptibility to the viral pathogen. The DEGs identified in this work can be used as basis in designing associated gene markers for the precise integration of resistance genes in marker-assisted breeding programs. Furthermore, the findings can be applied to develop genome-edited banana cultivars targeting the resistance and susceptibility genes, thus developing novel cultivars that are resilient to important diseases.


Assuntos
Babuvirus , Musa , Musa/genética , Babuvirus/genética , RNA-Seq , Doenças das Plantas/genética , Melhoramento Vegetal , Genótipo , DNA Viral/genética
2.
Plant Dis ; 107(7): 1973-1978, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36633389

RESUMO

Banana bunchy top disease (BBTD) is caused by banana bunchy top virus (BBTV), the most important virus affecting banana. Currently, no cultivar or accession of banana has complete resistance to BBTD. A total of 36 wild Musa spp. accessions, including 34 Musa balbisiana and 2 M. acuminata subsp. errans ("Agutay"), were screened for resistance against BBTV. In greenhouse tests using viruliferous banana aphids (Pentalonia nigronervosa), all M. balbisiana accessions remained symptomless, and BBTV was not detected in any of these plants by PCR at 3 and 6 months postinoculation. In contrast, 100% disease incidence was recorded in M. acuminata subsp. errans and in cv. Lakatan susceptible control plants. The PCR-negative M. balbisiana plants were then transferred to a field with high BBTV inoculum pressure where they remained symptomless and PCR-negative for up to 5 years, while all cv. Lakatan developed BBTD. Wild M. balbisiana accessions showed a high level of resistance and possibly immunity to BBTV and are expected to provide a resource for conventional and marker-assisted breeding.[Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Afídeos , Babuvirus , Musa , Animais , Babuvirus/genética , Filipinas , Doenças das Plantas/prevenção & controle , Melhoramento Vegetal
3.
Curr Microbiol ; 79(6): 164, 2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35435500

RESUMO

Erwinia mallotivora is one of the most important bacterial pathogens of papaya and causes bacterial crown rot disease in the Philippines. In this paper, we present the draft genome sequences of six Philippine E. mallotivora isolates to provide insights into the genes involved in host-pathogen interactions and compare their genomes to other Erwinia species. The genomes were sequenced using Illumina Miseq platform. The draft whole-genome assemblies of the E. mallotivora isolates are composed of 36-64 contigs with N50 value ranging from 285 to 332 kbp and cover 96.2-100% of the estimated genome size. Structural genome annotation of these assemblies has predicted 4489-4749 protein-coding genes. Comparative genomic analysis using orthologous gene sets led to the identification of conserved genes within the genus and species-specific gene orthologous groups, which collectively provide a baseline for functional genomic studies to determine genes affecting virulence and host specificity. Secreted proteins of E. mallotivora were also predicted and characterized to unravel putative genes involved in plant-pathogen interactions. This study provides the first draft whole-genome sequences of Philippine isolates of E. mallotivora, thus expanding the genomic knowledge for this species in comparison with other members of the genus Erwinia.


Assuntos
Erwinia , Erwinia/genética , Genoma Bacteriano/genética , Genômica , Filipinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...