Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 4853, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35995772

RESUMO

Rod-shaped bacteria typically elongate and divide by transverse fission. However, several bacterial species can form rod-shaped cells that divide longitudinally. Here, we study the evolution of cell shape and division mode within the family Neisseriaceae, which includes Gram-negative coccoid and rod-shaped species. In particular, bacteria of the genera Alysiella, Simonsiella and Conchiformibius, which can be found in the oral cavity of mammals, are multicellular and divide longitudinally. We use comparative genomics and ultrastructural microscopy to infer that longitudinal division within Neisseriaceae evolved from a rod-shaped ancestor. In multicellular longitudinally-dividing species, neighbouring cells within multicellular filaments are attached by their lateral peptidoglycan. In these bacteria, peptidoglycan insertion does not appear concentric, i.e. from the cell periphery to its centre, but as a medial sheet guillotining each cell. Finally, we identify genes and alleles associated with multicellularity and longitudinal division, including the acquisition of amidase-encoding gene amiC2, and amino acid changes in proteins including MreB and FtsA. Introduction of amiC2 and allelic substitution of mreB in a rod-shaped species that divides by transverse fission results in shorter cells with longer septa. Our work sheds light on the evolution of multicellularity and longitudinal division in bacteria, and suggests that members of the Neisseriaceae family may be good models to study these processes due to their morphological plasticity and genetic tractability.


Assuntos
Divisão Celular , Neisseriaceae , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Evolução Biológica , Parede Celular/metabolismo , Mamíferos/microbiologia , Neisseriaceae/citologia , Peptidoglicano/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33602809

RESUMO

How DNA-dependent RNA polymerase (RNAP) acts on bacterial cell cycle progression during transcription elongation is poorly investigated. A forward genetic selection for Caulobacter crescentus cell cycle mutants unearthed the uncharacterized DUF1013 protein (TrcR, transcriptional cell cycle regulator). TrcR promotes the accumulation of the essential cell cycle transcriptional activator CtrA in late S-phase but also affects transcription at a global level to protect cells from the quinolone antibiotic nalidixic acid that induces a multidrug efflux pump and from the RNAP inhibitor rifampicin that blocks transcription elongation. We show that TrcR associates with promoters and coding sequences in vivo in a rifampicin-dependent manner and that it interacts physically and genetically with RNAP. We show that TrcR function and its RNAP-dependent chromatin recruitment are conserved in symbiotic Sinorhizobium sp. and pathogenic Brucella spp Thus, TrcR represents a hitherto unknown antibiotic target and the founding member of the DUF1013 family, an uncharacterized class of transcriptional regulators that track with RNAP during the elongation phase to promote transcription during the cell cycle.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Caulobacter crescentus/crescimento & desenvolvimento , Ciclo Celular/efeitos dos fármacos , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Proteínas de Bactérias/genética , Caulobacter crescentus/efeitos dos fármacos , RNA Polimerases Dirigidas por DNA/genética , Regiões Promotoras Genéticas
3.
Nucleic Acids Res ; 47(20): 10628-10644, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31598724

RESUMO

Many bacteria acquire dissemination and virulence traits in G1-phase. CtrA, an essential and conserved cell cycle transcriptional regulator identified in the dimorphic alpha-proteobacterium Caulobacter crescentus, first activates promoters in late S-phase and then mysteriously switches to different target promoters in G1-phase. We uncovered a highly conserved determinant in the DNA-binding domain (DBD) of CtrA uncoupling this promoter switch. We also show that it reprograms CtrA occupancy in stationary cells inducing a (p)ppGpp alarmone signal perceived by the RNA polymerase beta subunit. A simple side chain modification in a critical residue within the core DBD imposes opposing developmental phenotypes and transcriptional activities of CtrA and a proximal residue can direct CtrA towards activation of the dispersal (G1-phase) program. Hence, we propose that this conserved determinant in the CtrA primary structure dictates promoter reprogramming during the growth transition in other alpha-proteobacteria that differentiate from replicative cells into dispersal cells.


Assuntos
Proteínas de Bactérias/metabolismo , Caulobacter crescentus/crescimento & desenvolvimento , Caulobacter crescentus/metabolismo , Ciclo Celular , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Cápsulas Bacterianas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Caulobacter crescentus/citologia , DNA Bacteriano/metabolismo , Fase G1 , Guanosina Tetrafosfato/metabolismo , Movimento , Mutação/genética , Regiões Promotoras Genéticas , Ligação Proteica , Fase S , Supressão Genética , Fatores de Transcrição/química , Fatores de Transcrição/genética
4.
Nat Rev Microbiol ; 15(3): 137-148, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28138140

RESUMO

The class Alphaproteobacteria includes Gram-negative free-living, symbiotic and obligate intracellular bacteria, as well as important plant, animal and human pathogens. Recent work has established the key antagonistic roles that phosphorylated guanosines, cyclic-di-GMP (c-di-GMP) and the alarmones guanosine tetraphosphate and guanosine pentaphosphate (collectively referred to as (p)ppGpp), have in the regulation of the cell cycle in these bacteria. In this Review, we discuss the insights that have been gained into the regulation of the initiation of DNA replication and cytokinesis by these second messengers, with a particular focus on the cell cycle of Caulobacter crescentus. We explore how the fluctuating levels of c-di-GMP and (p)ppGpp during the progression of the cell cycle and under conditions of stress control the synthesis and proteolysis of key regulators of the cell cycle. As these signals also promote bacterial interactions with host cells, the enzymes that control (p)ppGpp and c-di-GMP are attractive antibacterial targets.


Assuntos
Caulobacter crescentus/metabolismo , Pontos de Checagem do Ciclo Celular/fisiologia , GMP Cíclico/análogos & derivados , Guanosina Pentafosfato/metabolismo , Guanosina Tetrafosfato/metabolismo , Sinorhizobium meliloti/metabolismo , Ciclo Celular/fisiologia , Divisão Celular , GMP Cíclico/metabolismo , Citocinese/fisiologia , Replicação do DNA/fisiologia , Regulação Bacteriana da Expressão Gênica , Fosforilação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA