Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 59(16): 11459-11468, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32799463

RESUMO

The reactivity of the N-(1-adamantyl)acetamide ligand (L = adam) has been evaluated as precipitating agent for the hexavalent uranyl cation ([U] = 20-60 g L-1) in concentrated nitric acid aqueous solution (0.5-5 M). It results in the formation of a crystalline complex (UO2)(adam)2(NO3)2·2(adam) (1), in which the uranyl center is 8-fold coordinated to two chelating nitrate groups and two N-(1-adamantyl)acetamide (= adam) ligands through the oxygen atom of the amide function. Two other noncoordinating adam moieties are also observed in the crystal structure packing and interact through a hydrogen-bond scheme with the uranyl-centered species. A similar molecular assembly has been obtained with the plutonyl(VI) cation, in the complex (PuO2)(adam)2(NO3)2·2(adam) (2). Precipitation studies indicate high (UO2)(adam)2(NO3)2·2(adam) formation yields (up to 99%U for an L/U molecular ratio of 5/1) for HNO3 concentration in the 0.5-5 M range. However, the precipitation kinetics is rather slow and the reaction is completed after several hours (3-4 h). The calcination of the resulting solid under an air atmosphere led to the formation of the U3O8 oxide from 400 °C through a transient phase UO2 fluorite-type (from 200 °C).

2.
Inorg Chem ; 55(20): 10438-10444, 2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-27686632

RESUMO

U3O8 is considered to be the most stable phase for uranium oxide. Its structural properties must be accurately understood to foresee and manage aspects such as its leaching behavior when spent nuclear fuel is stored in an oxidative environment. Moreover, as fuel irradiation causes the formation of fission products and activation products such as plutonium and minor actinides, it is probable that U3O8 will be mixed with other chemical elements under real conditions of oxidation. The storage issue can be extended to americium transmutation, where the irradiated compounds are mixed oxides composed of uranium and americium. This study thus focused on determining the structural properties of a solid solution containing uranium and trivalent americium (U/Am ratio = 90/10) and synthesized so as to obtain conventional U3O8 oxide. This paper presents the possibility of combining trivalent americium with uranium in a U3O8 mixed oxide for the first time, despite the high valence and atomic ratio differences, and proposes novel structural arrangements. X-ray diffraction measurements reveal americium substitution in U3O8 uranium cationic sites, leading to phase transformation into a U3O8 high-temperature structure and general lattice swelling. X-ray absorption near-edge spectroscopy and extended X-ray absorption fine structure experiments highlight an excess of U+VI organized in uranyl units as the main consequence of accommodation.

3.
Inorg Chem ; 54(20): 9749-60, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26407031

RESUMO

In U(1-x)Am(x)O(2±Î´) compounds with low americium content (x ≤ 20 atom %) and oxygen-to-metal (O/M) ratios close to 2.0, Am(III+) cations are charge-balanced by an equivalent amount of U(V+) cations while the fluorite structure of pure U(IV+)O2 is maintained. Up to now, it is unknown whether this observation also holds for higher americium contents. In this study, we combined X-ray diffraction with Raman and X-ray absorption spectroscopies to investigate a U(0.5)Am(0.5)O(2±Î´) compound. Our results indicate that americium is again only present as Am(III+), while U(V+) remains below the amount required for charge balance. Unlike lower americium contents, this leads to an overall oxygen hypostoichiometry with an average O/M ratio of 1.92(2). The cationic sublattice is only slightly affected by the coexistence of large amounts of reduced (Am(III+)) and oxidized (U(V+)) cations, whereas significant deviations from the fluorite structure are evidenced by both extended X-ray absorption fine structure and Raman spectroscopies in the oxygen sublattice, with the observation of both vacancies and interstitials, the latter being apparently consistent with the insertion of U6O12 cuboctahedral-type clusters (as observed in the U4O9 or U3O7 phases). These results thus highlight the specificities of uranium-americium mixed oxides, which behave more like trivalent lanthanide-doped UO2 than U(1-x)Pu(x)O(2±Î´) MOX fuels.

4.
Dalton Trans ; 44(14): 6391-9, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25742991

RESUMO

Transmutation of americium in heterogeneous mode through the use of U1-xAmxO2±Î´ ceramic pellets, also known as Americium Bearing Blankets (AmBB), has become a major research axis. Nevertheless, in order to consider future large-scale deployment, the processes involved in AmBB fabrication have to minimize fine particle dissemination, due to the presence of americium, which considerably increases the risk of contamination. New synthesis routes avoiding the use of pulverulent precursors are thus currently under development, such as the Calcined Resin Microsphere Pelletization (CRMP) process. It is based on the use of weak-acid resin (WAR) microspheres as precursors, loaded with actinide cations. After two specific calcinations under controlled atmospheres, resin microspheres are converted into oxide microspheres composed of a monophasic U1-xAmxO2±Î´ phase. Understanding the different mechanisms during thermal conversion, that lead to the release of organic matter and the formation of a solid solution, appear essential. By combining in situ techniques such as XRD and XAS, it has become possible to identify the key temperatures for oxide formation, and the corresponding oxidation states taken by uranium and americium during mineralization. This paper thus presents the first results on the mineralization of (U,Am) loaded resin microspheres into a solid solution, through in situ XAS analysis correlated with HT-XRD.

5.
Inorg Chem ; 53(18): 9531-40, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25162209

RESUMO

Uranium-americium mixed oxides could be used as transmutation targets to lower Am inventory in spent nuclear fuels. Due to (241)Am activity, these materials are subjected to α-self-irradiation which provokes crystallographic disorder. Previous studies on U-Am mixed oxides gave first insight into α-radiation tolerance of these compounds, but have never been carried out for more than a year, whereas these compounds might be stored up to a few years between fabrication and irradiation. In this work, we study effects of self-irradiation on the structure of U(1-x)Am(x)O(2±Î´) solid solutions (x = 0.15 and 0.20) aged 3 to 4 years. Especially, X-ray diffraction and X-ray absorption spectroscopy are combined to observe these effects from both long-range and local perspectives. Results show that the fluorite-type structure of U-Am mixed oxides withstands (241)Am α-irradiation without major damage. Despite the increase of interatomic distances and crystallographic disorder observed during the first months of storage, the present results show that a steady state is then reached. Thus, no detrimental factors have been identified in this study in terms of structural damage for several-year storage of U(1-x)Am(x)O(2±Î´) pellets before irradiation. Furthermore, comparison between long-range and local evolution suggests that α-self-irradiation-induced defects are mainly located in low-ordered domains. Based on literature data and present results, the steady state appears related to the equilibrium between radioinduced defect formation and material self-healing.

6.
Inorg Chem ; 52(24): 14196-204, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24266774

RESUMO

The structural evolution under (241)Am self-irradiation of U(1-x)Am(x)O(2±Î´) transmutation fuels (with x ≤ 0.5) was studied by X-ray diffraction (XRD). Samples first underwent a preliminary heat treatment performed under a reducing atmosphere (Ar/H2(4%)) aiming to recover the previously accumulated structural defects. Over all measurements (carried out over up to a full year and for integrated doses up to 1.5 × 10(18) α-decay events·g(-1)), only fluorite U(1-x)Am(x)O(2±Î´) solid solutions were observed. Within a few days after the end of the heat treatment, each of the five studied samples was slowly oxidized as a consequence of their move to air atmosphere, which is evidenced by XRD by an initial sharp decrease of the unit cell parameter. For the compounds with x ≤ 0.15, this oxidation occurred without any phase transitions, but for U0.6Am0.4O(2±Î´) and U0.5Am0.5O(2±Î´), this process is accompanied by a transition from a first fluorite solid solution to a second oxidized one, as the latter is thermodynamically stable in ambient conditions. In the meantime and after the oxidation process, (241)Am α self-irradiation caused a structural swelling up to ∼0.8 vol %, independently of the sample composition. The kinetic constants of swelling were also determined by regression of experimental data and are, as expected, dependent on x and thus on the dose rate. The normalization of these kinetic constants by sample α-activity, however, leads to very close swelling rates among the samples. Finally, evolutions of microstrain and crystallite size were also monitored, but for the considered dose rates and cumulated doses, α self-irradiation was found, within the limits of the diffractometer used, to have almost no impact on these characteristics. Microstrain was found to be influenced instead by the americium content in the materials (i.e., by the impurities associated with americium starting material and the increase of cationic charge heterogeneity with increasing americium content).

7.
Inorg Chem ; 51(17): 9369-75, 2012 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-22908900

RESUMO

In order to reduce the nuclear waste inventory and radiotoxicity, U(1-x)Am(x)O(2±Î´) materials are promising fuels for heterogeneous transmutation. In this context, they are generally fabricated from UO(2+δ) and AmO(2-δ) dioxide powders. In the subsequent solid solution, americium is assumed to be trivalent whereas uranium exhibits a mixed-valence (+IV/+V) state. However, no formation mechanisms were ever evidenced and, more particularly, it was not possible to know whether the reduction of Am(IV) to Am(III) occurs before the solid-solution formation, or only once it is established. In this study, we used high-temperature X-ray diffraction on a UO(2±Î´)/AmO(2-δ) (15 mol %) mixture to observe in situ the formation of the U(1-x)Am(x)O(2±Î´) solid solution. We show that UO(2+δ) is, at relatively low temperature (<700 K), oxidized to U(4)O(9-δ), which is likely to be caused by oxygen release from the simultaneous AmO(2-δ) reduction to cubic Am(2)O(3±Î´). Cubic Am(2)O(3+δ) then transforms to hexagonal Am(2)O(3) at 1300 K. Thus, the initial Am(IV) is fully reduced to Am(III) before the solid solution starts forming at 1740 K. The UO(2) fluorite phase vanishes after 4 h at 1970 K, indicating that the formation of the solid solution is completed, which proves that this solid solution is formed after the complete reduction of Am(IV) to Am(III).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...