Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(33): 13389-13404, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39183902

RESUMO

The generation of noncovalent intermolecular interactions represents a powerful method to control molecular vibrations and rotations. Combining these with the axial ligand field enforced by the metallocene ligand scaffold provides a dual-pronged approach in controlling the magnetic-relaxation pathways for dysprosium-based single-molecule magnets (SMMs). Here, we present the first implementation of 2,3,4,5-tetraiodopyrrole (TIPH) in its anionic form [TIP]- as a ligand in three isostructural rare-earth metal complexes Cp*2RE(TIP) (1-RE, RE = Y, Gd, and Dy; Cp* = pentamethylcylopentadienyl), where the TIP ligand binds through the nitrogen and one iodine atom κ2(N,I) to the metal centre. The shallow potential energy surface of the intermolecular σ-hole interaction yields distortions of the interatomic distances at elevated temperatures which were investigated by variable-temperature SCXRD. 1-RE constitute the first crystallographically characterized molecules containing TIP as a ligand for any metal ion, and 1-Dy is the first SMM that employs the TIP ligand. The structural dependence on temperature allowed the mechanism of magnetic relaxation to be explored through ab initio calculations at different temperatures. The electronic influence of the coordinated iodine substituent was probed via magnetometry and cw-EPR spectroscopy on 1-Gd. To further scrutinize the impact of the iodine substituents on the physical properties, a second set of new complexes Cp*2RE(DMP) (2-RE, RE = Y, and Dy) where DMP = 2,5-dimethylpyrrolyl were synthesized. Here, the DMP ligand binds similarly to the TIP ligand and represents an all-hydrocarbon analogue to 1-RE. 2-Dy constitutes the first SMM bearing a DMP ligand.

2.
Chem Commun (Camb) ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39194640

RESUMO

The seminal isolation of a dinuclear rare earth metal complex comprising a bridging 2,2'-azobispyridyl radical anion, [(Cptet2Y)2(µ-abpy˙)](BPh4), is presented, which was obtained from a one-electron chemical oxidation of [(Cptet2Y)2(µ-abpy)]. The unprecedented compounds were characterized by crystallography, spectroscopy and DFT computations. The radical character was proven by EPR spectroscopy.

3.
Chempluschem ; : e202400311, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958247

RESUMO

Anionic ancillary ligands play a critical role in the construction of rare earth (RE) metal complexes due to the large influence on the stability of the molecule and engendering emergent electronic properties that are of interest in a plethora of applications. Supporting ligands comprising oxygen donor atoms are highly pursued in RE chemistry owing to the high oxophilicity innate to these ions. The scarcely employed bis(acyl)phosphide (BAP) ligands feature oxygen coordination sites and contain a phosphide backbone rendering it attractive for RE-coordination chemistry. Here, we integrate bis(mesitoyl)phosphide (mesBAP) as an ancillary ligand into REIII chemistry to generate the first dinuclear trivalent RE complexes containing BAP ligands; [{mesBAP}2RE(THF)(µ-Cl)]2 (RE=Y, (1), Gd (2), and Dy (3); THF=tetrahydrofuran). Each RE center is ligated to two monoanionic mesBAP ligands, one THF molecule and one chloride ion. All three molecules were characterized through single-crystal X-ray diffraction, 31P NMR, IR and UV-Vis spectroscopy. 31P, 1H and 13C NMR on the diamagnetic yttrium congener 1 confirm asymmetric ligand coordination. DFT calculations conducted on 2 provided insight into the electronic structure. The magnetic properties of 2 and 3 were investigated via SQUID magnetometry. The GdIII ions exhibit weak antiferromagnetic coupling, corroborated by DFT results.

4.
Inorg Chem ; 63(21): 9659-9669, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38569134

RESUMO

Ancillary ligand scaffolds that sufficiently stabilize a metal ion to allow its coordination to an open-shell ligand are scarce, yet their development is essential for next-generation spin-based materials with topical applications in quantum information science. To this end, a synthetic challenge must be met: devising molecules that enable the binding of a redox-active ligand through facile displacement and clean removal of a weakly coordinating anion. Here, we probe the accessibility of unprecedented radical-containing rare-earth guanidinate complexes by combining our recently discovered yttrium tetraphenylborate complex [{(Me3Si)2NC(NiPr)2}2Y][(µ-η6-Ph)(BPh3)] with the redox-active ligands 2,2'-bipyridine (bpy) and 2,2'-bis(benzimidazole) (Bbim), respectively, under reductive conditions. Our endeavor resulted in the first evidence of guanidinate complexes that contain radicals, namely, a mononuclear bipyridyl radical complex, {(Me3Si)2NC(NiPr)2}2Y(bpy•) (1), and a dinuclear bis(benzimidazolyl) radical-bridged complex, [K(crypt-222)][{(Me3Si)2NC(NiPr)2}2Y]2(µ-Bbim•) (2'). The latter was achieved by an in situ reduction of [{(Me3Si)2NC(NiPr)2}2Y]2(µ-Bbim) (2), which was isolated from a salt metathesis reaction. 1 and 2 were characterized by X-ray crystallography and IR and UV-vis spectroscopy. Variable-temperature electron paramagnetic resonance spectroscopy was applied to gain insight into the distribution of unpaired spin density on 1 and 2'. Density functional theory calculations were conducted on 1 and 2' to elucidate further their electronic structures. The redox activity of 1 and 2' was also probed by electrochemical methods.

5.
Inorg Chem ; 62(36): 14604-14614, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37638984

RESUMO

The π- and σ-basicity of the pyrrolyl ligand affords several coordination modes. A sterically encumbering coordination sphere around metal centers may foster new coordination modes for the pyrrolyl ligand. Here, we present three dinuclear rare earth complexes [Cp*2RE(µ-pyr)]2, [RE = Y (1), La (2), Dy (3); Cp* = pentamethylcyclopentadienyl, pyr = pyrrolyl], which were synthesized through a protonolysis reaction between allyl complexes and H-pyrrole. Each metal is ligated by two Cp* ligands and the N atom of the pyrrolyl ring while interacting with the π-system of the other pyrrolyl ligand, yielding an unprecedented coordination mode for pyrrolyl best described as [((η5-Cp*)2RE)2(µ-1η2-pyr-2κN)(µ-2η2-pyr-1κN)]. The steric congestion implemented by the Cp* ligands forces this asymmetric coordination of the pyrrolyl ligand. 1-3 were characterized by crystallography, electrochemistry, and spectroscopy. Density functional theory calculations on 1 uncovered the bonding situation between the pyrrolyl ligand and the yttrium(III) ion. Excitingly, 3 displays slow magnetic relaxation under zero dc field with Ueff = 98.9(7) cm-1 and τo = 6.7(1) × 10-8 s, placing it among coveted dinuclear metallocene single-molecule magnets. CASSCF calculations provided the energy of the crystal field states of DyIII and confirmed the barrier height.

6.
Chem Sci ; 14(16): 4257-4264, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37123180

RESUMO

A room temperature stable complex formulated as Y(NHAr*)2 has been prepared, where Ar* = 2,6-(2,4,6-(iPr)3C6H2)C6H3, by KC8 reduction of ClY(NHAr*)2. Based on EPR evidence, Y(NHAr*)2 is an example of a d1 Y(ii) complex with significant delocalization of the unpaired electron density from the metal to the ligand. The isolation of molecular divalent metal complexes is challenging for rare earth elements such as yttrium. In fact, stabilization of the divalent state requires judicious ligand design that allows the metal center to be coordinatively saturated. Divalent rare earth elements tend to be reactive towards various substrates. Interestingly, Y(NHAr*)2 reacts as a radical donor towards t BuNC to generate an unusual yttrium isocyanide complex, CNY(NHAr*)2, based on spectroscopic evidence and single-crystal X-ray diffraction data.

7.
Inorg Chem ; 61(5): 2444-2454, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35042339

RESUMO

Isolable heteroleptic tris(metallocenes) containing five-membered and larger rings remain extremely scarce. The utilization of tripositive rare-earth-metal ions with ionic radii >1 Šallowed access to unprecedented and sterically congested dibenzocyclooctatetraenyl (dbCOT) metallocenes, [K(crypt-222)][Cptet2RE(η2-dbCOT)] (RE = Y (1), Dy (2); Cptet = tetramethylcyclopentadienyl), through a salt metathesis reaction involving Cptet2RE(BPh4) and the potassium salt of the dbCOT dianion. The solid-state structures were investigated by single-crystal X-ray diffraction, magnetometry, and IR spectroscopy and provided evidence for the first crystallographically characterized (dbCOT)2- anion in a complex containing d- or f-block metals. Remarkably, the (Cptet)- ligands force a distortion from planarity within the (dbCOT)2- moiety, engendering a rare η2-bonding motif, as opposed to the classical η8 conformation observed in complexes bearing a (COT)2- ion. The η2 coordination mode was proven crystallographically between 100 and 298 K and computationally (DFT and NBO). Furthermore, nucleus independent chemical shift (NICS) calculations uncovered significant ring current within the dbCOT ligand. The solution-state properties of 1 and 2 were analyzed via cyclic voltammetry, NMR, and UV-vis spectroscopy. Cyclic voltammograms of 1 and 2 exhibit a quasi-reversible feature indicating the accessibility of complexes with dbCOT in two oxidation states (dbCOT2-/3-•). Importantly, the dysprosium congener, 2, is a zero-field single-molecule magnet (SMM).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA