Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 18(11): 2008-2020, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31434693

RESUMO

The restricted expression pattern of B-cell maturation antigen (BCMA) makes it an ideal tumor-associated antigen (TAA) for the treatment of myeloma. BCMA has been targeted by both CD3 bispecific antibody and antibody-drug conjugate (ADC) modalities, but a true comparison of modalities has yet to be performed. Here we utilized a single BCMA antibody to develop and characterize both a CD3 bispecific and 2 ADC formats (cleavable and noncleavable) and compared activity both in vitro and in vivo with the aim of generating an optimal therapeutic. Antibody affinity, but not epitope was influential in drug activity and hence a high-affinity BCMA antibody was selected. Both the bispecific and ADCs were potent in vitro and in vivo, causing dose-dependent cell killing of myeloma cell lines and tumor regression in orthotopic myeloma xenograft models. Primary patient cells were effectively lysed by both CD3 bispecific and ADCs, with the bispecific demonstrating improved potency, maximal cell killing, and consistency across patients. Safety was evaluated in cynomolgus monkey toxicity studies and both modalities were active based on on-target elimination of B lineage cells. Distinct nonclinical toxicity profiles were seen for the bispecific and ADC modalities. When taken together, results from this comparison of BCMA CD3 bispecific and ADC modalities suggest better efficacy and an improved toxicity profile might be achieved with the bispecific modality. This led to the advancement of a bispecific candidate into phase I clinical trials.


Assuntos
Anticorpos Biespecíficos/administração & dosagem , Antígeno de Maturação de Linfócitos B/metabolismo , Complexo CD3/imunologia , Imunoconjugados/administração & dosagem , Mieloma Múltiplo/tratamento farmacológico , Animais , Anticorpos Biespecíficos/efeitos adversos , Anticorpos Biespecíficos/farmacologia , Afinidade de Anticorpos , Antígeno de Maturação de Linfócitos B/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imunoconjugados/efeitos adversos , Imunoconjugados/farmacologia , Camundongos , Mieloma Múltiplo/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Sci Rep ; 9(1): 2443, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30792442

RESUMO

Antibody-drug conjugates (ADCs) are promising therapies for haematological cancers. Historically, their therapeutic benefit is due to ADC targeting of lineage-restricted antigens. The C-X-C motif chemokine receptor 4 (CXCR4) is attractive for targeted therapy of haematological cancers, given its expression in multiple tumour types and role in cancer "homing" to bone marrow. However, CXCR4 is also expressed in haematopoietic cells and other normal tissues, raising safety challenges to the development of anti-CXCR4 ADCs for cancer treatment. Here, we designed the first anti-CXCR4 ADC with favourable therapeutic index, effective in xenografts of haematopoietic cancers resistant to standard of care and anti-CXCR4 antibodies. We screened multiple ADC configurations, by varying type of linker-payload, drug-to-antibody ratio (DAR), affinity and Fc format. The optimal ADC bears a non-cleavable linker, auristatin as payload at DAR = 4 and a low affinity antibody with effector-reduced Fc. Contrary to other drugs targeting CXCR4, anti-CXCR4 ADCs effectively eliminated cancer cells as monotherapy, while minimizing leucocytosis. The optimal ADC selectively eliminated CXCR4+ cancer cells in solid tumours, but showed limited toxicity to normal CXCR4+ tissues, sparing haematopoietic stem cells and progenitors. Our work provides proof-of-concept that through empirical ADC design, it is possible to target proteins with broad normal tissue expression.


Assuntos
Antineoplásicos Imunológicos , Desenho de Fármacos , Imunoconjugados , Receptores CXCR4/imunologia , Animais , Antineoplásicos Imunológicos/administração & dosagem , Antineoplásicos Imunológicos/efeitos adversos , Antineoplásicos Imunológicos/síntese química , Antineoplásicos Imunológicos/química , Células CHO , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Células Cultivadas , Cricetinae , Cricetulus , Desoxicitidina/administração & dosagem , Desoxicitidina/efeitos adversos , Desoxicitidina/análogos & derivados , Feminino , Humanos , Imunoconjugados/administração & dosagem , Imunoconjugados/efeitos adversos , Imunoconjugados/química , Fragmentos Fab das Imunoglobulinas/administração & dosagem , Fragmentos Fab das Imunoglobulinas/efeitos adversos , Fragmentos Fab das Imunoglobulinas/química , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Camundongos Transgênicos , Modelos Moleculares , Estrutura Terciária de Proteína , Receptores CXCR4/antagonistas & inibidores , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
3.
Bioconjug Chem ; 28(4): 1102-1114, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28151644

RESUMO

Antibody drug conjugates (ADCs) provide an efficacious and relatively safe means by which chemotherapeutic agents can be specifically targeted to cancer cells. In addition to the selection of antibody targets, ADCs offer a modular design that allows selection of ADC characteristics through the choice of linker chemistries, toxins, and conjugation sites. Many studies have indicated that release of toxins bound to antibodies via noncleavable linker chemistries relies on the internalization and intracellular trafficking of the ADC. While this can make noncleavable ADCs more stable in the serum, it can also result in lower efficacy when their respective targets are not internalized efficiently or are recycled back to the cell surface following internalization. Here, we show that a lysosomally targeted ADC against the protein APLP2 mediates cell killing, both in vitro and in vivo, more effectively than an ADC against Trop2, a protein with less efficient lysosomal targeting. We also engineered a bispecific ADC with one arm targeting HER2 for the purpose of directing the ADC to tumors, and the other arm targeting APLP2, whose purpose is to direct the ADC to lysosomes for toxin release. This proof-of-concept bispecific ADC demonstrates that this technology can be used to shift the intracellular trafficking of a constitutively recycled target by directing one arm of the antibody against a lysosomally delivered protein. Our data also show limitations of this approach and potential future directions for development.


Assuntos
Sistemas de Liberação de Medicamentos , Imunoconjugados/farmacologia , Lisossomos/metabolismo , Transcitose , Precursor de Proteína beta-Amiloide/imunologia , Precursor de Proteína beta-Amiloide/uso terapêutico , Animais , Anticorpos Biespecíficos/uso terapêutico , Antineoplásicos/química , Linhagem Celular Tumoral , Humanos , Imunoconjugados/metabolismo , Camundongos Nus , Proteínas do Tecido Nervoso/imunologia , Proteínas do Tecido Nervoso/uso terapêutico , Receptor ErbB-2/imunologia , Receptor ErbB-2/uso terapêutico
4.
Mol Cancer Ther ; 15(11): 2698-2708, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27582525

RESUMO

Trop-2, also known as TACSTD2, EGP-1, GA733-1, and M1S1, is frequently expressed on a variety of human carcinomas, and its expression is often associated with poor prognosis of the diseases. However, it is also present on the epithelium of several normal tissues. A comprehensively designed Trop-2-targeting antibody-drug conjugate (ADC), balancing both efficacy and toxicity, is therefore necessary to achieve clinical utility. To this end, we developed a cleavable Trop-2 ADC (RN927C) using a site-specific transglutaminase-mediated conjugation method and a proprietary microtubule inhibitor (MTI) linker-payload, PF-06380101. Robust in vitro cytotoxicity of RN927C was observed on a panel of Trop-2-expressing tumor cell lines, with IC50 generally in the subnanomolar range. As expected for an MTI-containing ADC, RN927C readily induced mitotic arrest of treated cells in vitro and in vivo, followed by subsequent cell death. The in vivo efficacy of RN927C was tested in multiple cell line and patient-derived xenograft tumor models, including pancreatic, lung, ovarian, and triple-negative breast tumor types. Single-dose administration of RN927C at 0.75 to 3 mg/kg was generally sufficient to induce sustained regression of Trop-2-expressing tumors and showed superior efficacy over standard treatment with paclitaxel or gemcitabine. Administration of RN927C in nonhuman primate toxicity studies resulted in target-mediated effects in skin and oral mucosa, consistent with Trop-2 expression in these epithelial tissues with minimal, non-dose limiting off-target toxicities. On the basis of the combined efficacy and safety results, RN927C is postulated to have a favorable therapeutic index for treatment of solid tumors. Mol Cancer Ther; 15(11); 2698-708. ©2016 AACR.


Assuntos
Antineoplásicos/farmacologia , Moléculas de Adesão Celular/antagonistas & inibidores , Imunoconjugados/farmacologia , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Antineoplásicos/química , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Estabilidade de Medicamentos , Feminino , Expressão Gênica , Humanos , Imunoconjugados/química , Lisossomos , Camundongos , Mitose/efeitos dos fármacos , Mitose/genética , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Mol Cancer Ther ; 15(5): 958-70, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26944918

RESUMO

The degree of stability of antibody-drug linkers in systemic circulation, and the rate of their intracellular processing within target cancer cells are among the key factors determining the efficacy of antibody-drug conjugates (ADC) in vivo Previous studies demonstrated the susceptibility of cleavable linkers, as well as auristatin-based payloads, to enzymatic cleavage in rodent plasma. Here, we identify Carboxylesterase 1C as the enzyme responsible for the extracellular hydrolysis of valine-citrulline-p-aminocarbamate (VC-PABC)-based linkers in mouse plasma. We further show that the activity of Carboxylesterase 1C towards VC-PABC-based linkers, and consequently the stability of ADCs in mouse plasma, can be effectively modulated by small chemical modifications to the linker. While the introduced modifications can protect the VC-PABC-based linkers from extracellular cleavage, they do not significantly alter the intracellular linker processing by the lysosomal protease Cathepsin B. The distinct substrate preference of the serum Carboxylesterase 1C offers the opportunity to modulate the extracellular stability of cleavable ADCs without diminishing the intracellular payload release required for ADC efficacy. Mol Cancer Ther; 15(5); 958-70. ©2016 AACR.


Assuntos
Anticorpos Monoclonais/química , Antineoplásicos/química , Carbamatos/química , Citrulina/química , Imunoconjugados/química , Valina/química , Animais , Anticorpos Monoclonais/farmacocinética , Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Biomarcadores , Carboxilesterase/química , Carboxilesterase/metabolismo , Desenho de Fármacos , Estabilidade de Medicamentos , Humanos , Imunoconjugados/farmacocinética , Imunoconjugados/farmacologia , Camundongos , Camundongos Knockout , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade
7.
PLoS One ; 10(7): e0132282, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26161543

RESUMO

The efficacy of an antibody-drug conjugate (ADC) is dependent on the properties of its linker-payload which must remain stable while in systemic circulation but undergo efficient processing upon internalization into target cells. Here, we examine the stability of a non-cleavable Amino-PEG6-based linker bearing the monomethyl auristatin D (MMAD) payload site-specifically conjugated at multiple positions on an antibody. Enzymatic conjugation with transglutaminase allows us to create a stable amide linkage that remains intact across all tested conjugation sites on the antibody, and provides us with an opportunity to examine the stability of the auristatin payload itself. We report a position-dependent degradation of the C terminus of MMAD in rodent plasma that has a detrimental effect on its potency. The MMAD cleavage can be eliminated by either modifying the C terminus of the toxin, or by selection of conjugation site. Both approaches result in improved stability and potency in vitro and in vivo. Furthermore, we show that the MMAD metabolism in mouse plasma is likely mediated by a serine-based hydrolase, appears much less pronounced in rat, and was not detected in cynomolgus monkey or human plasma. Clarifying these species differences and controlling toxin degradation to optimize ADC stability in rodents is essential to make the best ADC selection from preclinical models. The data presented here demonstrate that site selection and toxin susceptibility to mouse plasma degradation are important considerations in the design of non-cleavable ADCs, and further highlight the benefits of site-specific conjugation methods.


Assuntos
Aminobenzoatos/farmacocinética , Portadores de Fármacos/farmacocinética , Oligopeptídeos/farmacocinética , Aminobenzoatos/administração & dosagem , Aminobenzoatos/química , Animais , Anticorpos/administração & dosagem , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Estabilidade de Medicamentos , Feminino , Células HEK293 , Humanos , Macaca fascicularis , Camundongos SCID , Oligopeptídeos/administração & dosagem , Oligopeptídeos/química , Ratos
8.
Bioconjug Chem ; 26(4): 650-9, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25643134

RESUMO

The systemic stability of the antibody-drug linker is crucial for delivery of an intact antibody-drug conjugate (ADC) to target-expressing tumors. Linkers stable in circulation but readily processed in the target cell are necessary for both safety and potency of the delivered conjugate. Here, we report a range of stabilities for an auristatin-based payload site-specifically attached through a cleavable valine-citrulline-p-aminobenzylcarbamate (VC-PABC) linker across various sites on an antibody. We demonstrate that the conjugation site plays an important role in determining VC-PABC linker stability in mouse plasma, and that the stability of the linker positively correlates with ADC cytotoxic potency both in vitro and in vivo. Furthermore, we show that the VC-PABC cleavage in mouse plasma is not mediated by Cathepsin B, the protease thought to be primarily responsible for linker processing in the lysosomal degradation pathway. Although the VC-PABC cleavage is not detected in primate plasma in vitro, linker stabilization in the mouse is an essential prerequisite for designing successful efficacy and safety studies in rodents during preclinical stages of ADC programs. The divergence of linker metabolism in mouse plasma and its intracellular cleavage offers an opportunity for linker optimization in the circulation without compromising its efficient payload release in the target cell.


Assuntos
Aminobenzoatos/química , Anticorpos Monoclonais/química , Antineoplásicos/química , Imunoconjugados/química , Oligopeptídeos/química , Neoplasias Pancreáticas/tratamento farmacológico , Aminobenzoatos/sangue , Aminobenzoatos/farmacocinética , Aminobenzoatos/farmacologia , Animais , Antineoplásicos/sangue , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Carbamatos/química , Catepsina B/química , Catepsina B/metabolismo , Linhagem Celular Tumoral , Dipeptídeos/química , Sistemas de Liberação de Medicamentos/métodos , Estabilidade de Medicamentos , Feminino , Humanos , Imunoconjugados/sangue , Imunoconjugados/farmacocinética , Imunoconjugados/farmacologia , Camundongos , Camundongos Nus , Modelos Moleculares , Oligopeptídeos/sangue , Oligopeptídeos/farmacocinética , Oligopeptídeos/farmacologia , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/patologia , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Bioconjug Chem ; 25(2): 240-50, 2014 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-24359082

RESUMO

Antibody drug conjugates (ADCs) are becoming an important new class of therapeutic agents for the treatment of cancer. ADCs are produced through the linkage of a cytotoxic small molecule (drug) to monoclonal antibodies that target tumor cells. Traditionally, most ADCs rely on chemical conjugation methods that yield heterogeneous mixtures of varying number of drugs attached at different positions. The potential benefits of site-specific drug conjugation in terms of stability, manufacturing, and improved therapeutic index has recently led to the development of several new site-specific conjugation technologies. However, detailed characterization of the degree of site specificity is currently lacking. In this study we utilize mass spectrometry to characterize the extent of site-specificity of an enzyme-based site-specific antibody-drug conjugation technology that we recently developed. We found that, in addition to conjugation of the engineered site, a small amount of aglycosylated antibody present in starting material led to conjugation at position Q295, resulting in approximately 1.3% of off-target conjugation. Based on our detection limits, we show that Q295N mutant eliminates the off-target conjugation yielding highly homogeneous conjugates that are better than 99.8% site-specific. Our study demonstrates the importance of detailed characterization of ADCs and describes methods that can be utilized to characterize not only our enzyme based conjugates, but also ADCs generated by other conjugation technologies.


Assuntos
Anticorpos/química , Preparações Farmacêuticas/química , Espectrometria de Massas em Tandem/métodos , Transglutaminases/química , Cromatografia Líquida
10.
Chem Biol ; 20(2): 161-7, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23438745

RESUMO

Antibody drug conjugates (ADCs) are a therapeutic class offering promise for cancer therapy. The attachment of cytotoxic drugs to antibodies can result in an effective therapy with better safety potential than nontargeted cytotoxics. To understand the role of conjugation site, we developed an enzymatic method for site-specific antibody drug conjugation using microbial transglutaminase. This allowed us to attach diverse compounds at multiple positions and investigate how the site influences stability, toxicity, and efficacy. We show that the conjugation site has significant impact on ADC stability and pharmacokinetics in a species-dependent manner. These differences can be directly attributed to the position of the linkage rather than the chemical instability, as was observed with a maleimide linkage. With this method, it is possible to produce homogeneous ADCs and tune their properties to maximize the therapeutic window.


Assuntos
Anticorpos/química , Antineoplásicos/química , Imunoconjugados/química , Animais , Anticorpos/imunologia , Meia-Vida , Humanos , Imunoconjugados/farmacocinética , Imunoconjugados/uso terapêutico , Cadeias Pesadas de Imunoglobulinas/química , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Leves de Imunoglobulina/química , Cadeias Leves de Imunoglobulina/imunologia , Camundongos , Neoplasias/tratamento farmacológico , Ratos , Transglutaminases/metabolismo , Moduladores de Tubulina/química
11.
J Pharm Biomed Anal ; 54(2): 351-8, 2011 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-20863644

RESUMO

Administration of biological therapeutic proteins can lead to unwanted immunogenicity in recipients of these products. The assessment and characterization of such immune reactions can be helpful to better understand their clinical relevance and how they relate to patient safety and therefore, have become an integral part of a product development program for biological therapeutics. Testing for anti-drug antibodies (ADA) to biological/biotechnology-derived therapeutic proteins generally follows a tiered approach. Samples are initially screened for binding antibodies; presumptive positives are then confirmed in a confirmatory assay; subsequently, confirmed-positive samples may be further characterized by titration and with a neutralizing antibody (NAb) assay. Regulatory guidances on immunogenicity state that assessing the neutralizing capacity of antibodies should preferably be done using functional bioassays, while recognizing that competitive ligand-binding (CLB) assays may be substituted when neutralizing bioassays are inadequate or not feasible. This manuscript describes case studies from four companies in which CLB assays and functional bioassays were compared for their ability to detect neutralizing ADA against a variety of biotechnology-derived therapeutic proteins. Our findings indicate that CLB assays are comparable to bioassays for the detection of NAbs, in some cases offering better detection sensitivity, lower variability, and less matrix interference.


Assuntos
Anticorpos Neutralizantes/análise , Bioensaio/métodos , Produtos Biológicos/imunologia , Anticorpos/análise , Anticorpos/imunologia , Formação de Anticorpos/imunologia , Ligação Competitiva , Produtos Biológicos/análise , Biotecnologia/métodos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Ligantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...