Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(5): 6587-6596, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37966636

RESUMO

The adverse outcome pathway (AOP) has been conceptualized in 2010 as an analytical construct to describe a sequential chain of causal links between key events, from a molecular initiating event leading to an adverse outcome (AO), considering several levels of biological organization. An AOP aims to identify and organize available knowledge about toxic effects of chemicals and drugs, either in ecotoxicology or toxicology, and it can be helpful in both basic and applied research and serve as a decision-making tool in support of regulatory risk assessment. The AOP concept has evolved since its introduction, and recent research in toxicology, based on integrative systems biology and artificial intelligence, gave it a new dimension. This innovative in silico strategy can help to decipher mechanisms of action and AOP and offers new perspectives in AOP development. However, to date, this strategy has not yet been applied to ecotoxicology. In this context, the main objective of this short article is to discuss the relevance and feasibility of transferring this strategy to ecotoxicology. One of the challenges to be discussed is the level of organisation that is relevant to address for the AO (population/community). This strategy also offers many advantages that could be fruitful in ecotoxicology and overcome the lack of time, such as the rapid identification of data available at a time t, or the identification of "data gaps". Finally, this article proposes a step forward with suggested priority topics in ecotoxicology that could benefit from this strategy.


Assuntos
Rotas de Resultados Adversos , Ecotoxicologia , Ecotoxicologia/métodos , Inteligência Artificial , Medição de Risco/métodos
2.
Environ Sci Pollut Res Int ; 28(2): 1283-1286, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33188634

RESUMO

The scientific knowledge produced by academic research can be valued in all sectors of human activity, including private sector. The ROVALTAIN Foundation organized a round-table during its scientific day in 2019. It crossed the points of view of academic scientists and industrial partners, addressing five main topics. The first one concerned the validation of a common definition of the academic research/private partners interface. Then, the group discussed the place for academic expertise in the corporate world; the advantages of involving academic researchers in expertise for the private sector; and the limits of this model. To conclude, the need of a third party, like the ROVALTAIN Foundation, as a catalyzer in building the interface between academic research and private partners has been discussed.


Assuntos
Ecotoxicologia , Setor Privado , Humanos , Indústrias , Organizações
3.
Front Cell Dev Biol ; 8: 588814, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33178700

RESUMO

The orderly radial migration of cortical neurons from their birthplace in the germinal zones to their final destination in the cortical plate is a prerequisite for the functional assembly of microcircuits in the neocortex. Rodent and primate corticogenesis differ both quantitatively and qualitatively, particularly with respect to the generation of neurons of the supragranular layers. Marked area differences in the outer subventricular zone progenitor cell density impact the radial glia scaffold compactness which is likely to induce area differences in radial migration strategy. Here, we describe specific features of radial migration in the non-human primate, including the absence of the premigratory multipolar stage found in rodents. Ex vivo approaches in the embryonic macaque monkey visual cortex, show that migrating neurons destined for supragranular and infragranular layers exhibit significant differences in morphology and velocity. Migrating neurons destined for the supragranular layers show a more complex bipolar morphology and higher motility rates than do infragranular neurons. There are area differences in the gross morphology and membrane growth behavior of the tip of the leading process. In the subplate compartment migrating neurons destined for the supragranular layers of presumptive area 17 exhibit radial constrained trajectories and leading processes with filopodia, which contrast with the meandering trajectories and leading processes capped by lamellipodia observed in the migrating neurons destined for presumptive area 18. Together these results present evidence that migrating neurons may exhibit autonomy and in addition show marked area-specific differences. We hypothesize that the low motility and high radial trajectory of area 17 migrating neurons contribute to the unique structural features of this area.

4.
Curr Opin Neurobiol ; 42: 75-83, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27978481

RESUMO

Neural stem cells go through a sequence of timely regulated gene expression and pattern of division mode to generate diverse neurons during brain development. During vertebrate cerebral cortex development, neural stem cells begin with proliferative symmetric divisions, subsequently undergo neurogenic asymmetric divisions, and finally gliogenic divisions. In this review, we explore the relationship between stem cell versus neural fate specification and the division mode. Specifically, we discuss recent findings on the mechanisms of asymmetric divisions, division mode, and developmental progression of neural progenitor identity.


Assuntos
Córtex Cerebral/citologia , Células-Tronco Neurais/citologia , Animais , Divisão Celular , Córtex Cerebral/embriologia , Neurogênese/fisiologia
5.
Front Cell Neurosci ; 9: 33, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25709568

RESUMO

Recent data have uncovered that spindle size asymmetry (SSA) is a key component of asymmetric cell division (ACD) in the mouse cerebral cortex (Delaunay et al., 2014). In the present study we show that SSA is independent of spindle orientation and also occurs during cortical progenitor divisions in the ventricular zone (VZ) of the macaque cerebral cortex, pointing to a conserved mechanism in the mammalian lineage. Because SSA magnitude is smaller in cortical precursors than in invertebrate neuroblasts, the unambiguous demonstration of volume differences between the two half spindles is considered to require 3D reconstruction of the mitotic spindle (Delaunay et al., 2014). Although straightforward, the 3D analysis of SSA is time consuming, which is likely to hinder SSA identification and prevent further explorations of SSA related mechanisms in generating ACD. We therefore set out to develop an alternative method for accurately measuring spindle asymmetry. Based on the mathematically demonstrated linear relationship between 2D and 3D analysis, we show that 2D assessment of spindle size in metaphase cells is as accurate and reliable as 3D reconstruction provided a specific procedure is applied. We have examined the experimental accuracy of the two methods by applying them to different sets of in vivo and in vitro biological data, including mouse and primate cortical precursors. Linear regression analysis demonstrates that the results from 2D and 3D reconstructions are equally powerful. We therefore provide a reliable and efficient technique to measure SSA in mammalian cells.

6.
Cell Rep ; 6(2): 400-14, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24412369

RESUMO

The regulation of asymmetric cell division (ACD) during corticogenesis is incompletely understood. We document that spindle-size asymmetry (SSA) between the two poles occurs during corticogenesis and parallels ACD. SSA appears at metaphase and is maintained throughout division, and we show it is necessary for proper neurogenesis. Imaging of spindle behavior and division outcome reveals that neurons preferentially arise from the larger-spindle pole. Mechanistically, SSA magnitude is controlled by Wnt7a and Vangl2, both members of the Wnt/planar cell polarity (PCP)-signaling pathway, and relayed to the cell cortex by P-ERM proteins. In vivo, Vangl2 and P-ERM downregulation promotes early cell-cycle exit and prevents the proper generation of late-born neurons. Thus, SSA is a core component of ACD that is conserved in invertebrates and vertebrates and plays a key role in the tight spatiotemporal control of self-renewal and differentiation during mammalian corticogenesis.


Assuntos
Divisão Celular Assimétrica , Neocórtex/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/metabolismo , Fuso Acromático/metabolismo , Proteínas Wnt/metabolismo , Animais , Polaridade Celular , Camundongos , Neocórtex/citologia , Neocórtex/embriologia , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais/citologia , Neurogênese , Neurônios/citologia , Neurônios/metabolismo , Proteínas Wnt/genética
7.
J Comp Neurol ; 512(1): 74-83, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18973275

RESUMO

Genetic labeling based on the Cre/lox reporter system has allowed the creation of fate maps for progenitor cells and their offspring. In the diencephalon, pools of progenitors express the plp transcripts in the zona limitans intrathalamica (ZLI), the basal plate of the diencephalon (bpD), and the posterior part of the hypothalamus. We used plp-Cre transgenics crossed with either Rosa26-lox-lacZ (R26R) or actin-lox gfp (Z/EG) reporter mice to investigate the progeny of plp-expressing ventricular cells in the diencephalon. We describe the subpopulations of prethalamic neurons derived from plp-activated progenitors, their possible migratory routes as development proceeds, and their final positional identity. Neurons derived from plp-expressing progenitors issued from the ZLI contribute to GABAergic cells in the zona incerta, the subgeniculate nucleus, the ventral lateral geniculate, and the intergeniculate leaflet. Plp(+) progenitors in the bpD and posterior hypothalamus appear to generate glutamatergic neurons in the subthalamic nucleus and GABAergic neurons in the mammillary and retromammillary tegmentum derivatives. In all these nuclei the contribution of plp(+) progenitors is only partial, illustrating the heterogeneity of origin of neurons in prethalamic and caudal hypothalamic nuclei.


Assuntos
Neurônios/fisiologia , Células-Tronco/fisiologia , Tálamo , Animais , Movimento Celular/fisiologia , Forma Celular , Genes Reporter , Camundongos , Camundongos Transgênicos , Neurônios/citologia , Células-Tronco/citologia , Tálamo/citologia , Tálamo/embriologia
8.
J Neurosci ; 28(10): 2551-62, 2008 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-18322099

RESUMO

The question of how neurons and glial cells are generated during the development of the CNS has over time led to two alternative models: either neuroepithelial cells are capable of giving rise to neurons first and to glial cells at a later stage (switching model), or they are intrinsically committed to generate one or the other (segregating model). Using the developing diencephalon as a model and by selecting a subpopulation of ventricular cells, we analyzed both in vitro, using clonal analysis, and in vivo, using inducible Cre/loxP fate mapping, the fate of neuroepithelial and radial glial cells generated at different time points during embryonic development. We found that, during neurogenic periods [embryonic day 9.5 (E9.5) to 12.5], proteolipid protein (plp)-expressing cells were lineage-restricted neuronal precursors, but later in embryogenesis, during gliogenic periods (E13.5 to early postnatal), plp-expressing cells were lineage-restricted glial precursors. In addition, we show that glial cells forming at E13.5 arise from a new pool of neuroepithelial progenitors distinct from neuronal progenitors cells, which lends support to the segregating model.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Neuroglia/citologia , Neuroglia/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Animais , Diencéfalo/citologia , Diencéfalo/embriologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Transgênicos , Ratos , Ratos Wistar , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...