Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 18960, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36347955

RESUMO

SMN protein deficiency causes motoneuron disease spinal muscular atrophy (SMA). SMN-based therapies improve patient motor symptoms to variable degrees. An early hallmark of SMA is the perturbation of the neuromuscular junction (NMJ), a synapse between a motoneuron and muscle cell. NMJ formation depends on acetylcholine receptor (AChR) clustering triggered by agrin and its co-receptors lipoprotein receptor-related protein 4 (LRP4) and transmembrane muscle-specific kinase (MuSK) signalling pathway. We have previously shown that flunarizine improves NMJs in SMA model mice, but the mechanisms remain elusive. We show here that flunarizine promotes AChR clustering in cell-autonomous, dose- and agrin-dependent manners in C2C12 myotubes. This is associated with an increase in protein levels of LRP4, integrin-beta-1 and alpha-dystroglycan, three agrin co-receptors. Furthermore, flunarizine enhances MuSK interaction with integrin-beta-1 and phosphotyrosines. Moreover, the drug acts on the expression and splicing of Agrn and Cacna1h genes in a muscle-specific manner. We reveal that the Cacna1h encoded protein Cav3.2 closely associates in vitro with the agrin co-receptor LRP4. In vivo, it is enriched nearby NMJs during neonatal development and the drug increases this immunolabelling in SMA muscles. Thus, flunarizine modulates key players of the NMJ and identifies Cav3.2 as a new protein involved in the NMJ biology.


Assuntos
Agrina , Atrofia Muscular Espinal , Animais , Camundongos , Agrina/genética , Agrina/metabolismo , Flunarizina , Integrinas/metabolismo , Atrofia Muscular Espinal/metabolismo , Junção Neuromuscular/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Colinérgicos/genética , Receptores Colinérgicos/metabolismo
2.
Front Mol Neurosci ; 13: 568171, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362463

RESUMO

Collagen Q (COLQ) is a specific collagen that anchors acetylcholinesterase (AChE) in the synaptic cleft of the neuromuscular junction. So far, no mutation has been identified in the ACHE human gene but over 50 different mutations in the COLQ gene are causative for a congenital myasthenic syndrome (CMS) with AChE deficiency. Mice deficient for COLQ mimic most of the functional deficit observed in CMS patients. At the molecular level, a striking consequence of the absence of COLQ is an increase in the levels of acetylcholine receptor (AChR) mRNAs and proteins in vivo and in vitro in murine skeletal muscle cells. Here, we decipher the mechanisms that drive AChR mRNA upregulation in cultured muscle cells deficient for COLQ. We show that the levels of AChR ß-subunit mRNAs are post-transcriptionally regulated by an increase in their stability. We demonstrate that this process results from an activation of p38 MAPK and the cytoplasmic translocation of the nuclear RNA-binding protein human antigen R (HuR) that interacts with the AU-rich element located within AChR ß-subunit transcripts. This HuR/AChR transcript interaction induces AChR ß-subunit mRNA stabilization and occurs at a specific stage of myogenic differentiation. In addition, pharmacological drugs that modulate p38 activity cause parallel modifications of HuR protein and AChR ß-subunit levels. Thus, our study provides new insights into the signaling pathways that are regulated by ColQ-deficiency and highlights for the first time a role for HuR and p38 in mRNA stability in a model of congenital myasthenic syndrome.

3.
Front Mol Biosci ; 7: 55, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32363199

RESUMO

The motor neurodegenerative disease spinal muscular atrophy (SMA) is caused by alterations of the survival motor neuron 1 (SMN1) gene involved in RNA metabolism. Although the disease mechanisms are not completely elucidated, SMN protein deficiency leads to abnormal small nuclear ribonucleoproteins (snRNPs) assembly responsible for widespread splicing defects. SMN protein localizes in nuclear bodies that are lost in SMA and adult onset amyotrophic lateral sclerosis (ALS) patient cells harboring TDP-43 or FUS/TLS mutations. We previously reported that flunarizine recruits SMN into nuclear bodies and improves the phenotype of an SMA mouse model. However, the precise mode of action remains elusive. Here, a marked reduction of the integral components of the SMN complex is observed in severe SMA patient fibroblast cells. We show that flunarizine increases the protein levels of a subset of components of the SMN-Gemins complex, Gemins2-4, and markedly reduces the RNA and protein levels of the pro-oxydant thioredoxin-interacting protein (TXNIP) encoded by an mRNA target of Gemin5. We further show that SMN deficiency causes a dissociation of the localization of the SMN complex components from the same nuclear bodies. The accumulation of TDP-43 in SMN-positive nuclear bodies is also perturbed in SMA cells. Notably, TDP-43 is found to co-localize with SMN in nuclear bodies of flunarizine-treated SMA cells. Our findings indicate that flunarizine reverses cellular changes caused by SMN deficiency in SMA cells and further support the view of a common pathway in RNA metabolism underlying infantile and adult motor neuron diseases.

4.
Sci Rep ; 8(1): 2075, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29391529

RESUMO

The hereditary neurodegenerative disorder spinal muscular atrophy (SMA) is characterized by the loss of spinal cord motor neurons and skeletal muscle atrophy. SMA is caused by mutations of the survival motor neuron (SMN) gene leading to a decrease in SMN protein levels. The SMN deficiency alters nuclear body formation and whether it can contribute to the disease remains unclear. Here we screen a series of small-molecules on SMA patient fibroblasts and identify flunarizine that accumulates SMN into Cajal bodies, the nuclear bodies important for the spliceosomal small nuclear RNA (snRNA)-ribonucleoprotein biogenesis. Using histochemistry, real-time RT-PCR and behavioural analyses in a mouse model of SMA, we show that along with the accumulation of SMN into Cajal bodies of spinal cord motor neurons, flunarizine treatment modulates the relative abundance of specific spliceosomal snRNAs in a tissue-dependent manner and can improve the synaptic connections and survival of spinal cord motor neurons. The treatment also protects skeletal muscles from cell death and atrophy, raises the neuromuscular junction maturation and prolongs life span by as much as 40 percent (p < 0.001). Our findings provide a functional link between flunarizine and SMA pathology, highlighting the potential benefits of flunarizine in a novel therapeutic perspective against neurodegenerative diseases.


Assuntos
Corpos Enovelados/efeitos dos fármacos , Flunarizina/farmacologia , Atrofia Muscular Espinal/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Animais , Linhagem Celular , Corpos Enovelados/metabolismo , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Flunarizina/uso terapêutico , Células HeLa , Humanos , Masculino , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Atrofia Muscular Espinal/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/farmacologia
5.
Development ; 144(9): 1712-1724, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28348167

RESUMO

Understanding the developmental steps that shape formation of the neuromuscular junction (NMJ) connecting motoneurons to skeletal muscle fibers is crucial. Wnt morphogens are key players in the formation of this specialized peripheral synapse, but their individual and collaborative functions and downstream pathways remain poorly understood at the NMJ. Here, we demonstrate through Wnt4 and Wnt11 gain-of-function studies in cell culture or in mice that Wnts enhance acetylcholine receptor (AChR) clustering and motor axon outgrowth. By contrast, loss of Wnt11 or Wnt-dependent signaling in vivo decreases AChR clustering and motor nerve terminal branching. Both Wnt4 and Wnt11 stimulate AChR mRNA levels and AChR clustering downstream of activation of the ß-catenin pathway. Strikingly, Wnt4 and Wnt11 co-immunoprecipitate with Vangl2, a core component of the planar cell polarity (PCP) pathway, which accumulates at embryonic NMJs. Moreover, mice bearing a Vangl2 loss-of-function mutation (loop-tail) exhibit fewer AChR clusters and overgrowth of motor axons bypassing AChR clusters. Together, our results provide genetic and biochemical evidence that Wnt4 and Wnt11 cooperatively contribute to mammalian NMJ formation through activation of both the canonical and Vangl2-dependent core PCP pathways.


Assuntos
Junção Neuromuscular/metabolismo , Transdução de Sinais , Proteínas Wnt/metabolismo , Proteína Wnt4/metabolismo , Animais , Axônios/metabolismo , Polaridade Celular , Embrião de Mamíferos/metabolismo , Espaço Extracelular/metabolismo , Camundongos Endogâmicos C57BL , Mutação/genética , Proteínas do Tecido Nervoso/metabolismo , Fenótipo , Receptores Colinérgicos/metabolismo , Sinapses/metabolismo
6.
J Neurosci ; 35(12): 4926-41, 2015 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-25810523

RESUMO

The muscle-specific kinase MuSK is one of the key molecules orchestrating neuromuscular junction (NMJ) formation. MuSK interacts with the Wnt morphogens, through its Frizzled-like domain (cysteine-rich domain [CRD]). Dysfunction of MuSK CRD in patients has been recently associated with the onset of myasthenia, common neuromuscular disorders mainly characterized by fatigable muscle weakness. However, the physiological role of Wnt-MuSK interaction in NMJ formation and function remains to be elucidated. Here, we demonstrate that the CRD deletion of MuSK in mice caused profound defects of both muscle prepatterning, the first step of NMJ formation, and synapse differentiation associated with a drastic deficit in AChR clusters and excessive growth of motor axons that bypass AChR clusters. Moreover, adult MuSKΔCRD mice developed signs of congenital myasthenia, including severe NMJs dismantlement, muscle weakness, and fatigability. We also report, for the first time, the beneficial effects of lithium chloride, a reversible inhibitor of the glycogen synthase kinase-3, that rescued NMJ defects in MuSKΔCRD mice and therefore constitutes a novel therapeutic reagent for the treatment of neuromuscular disorders linked to Wnt-MuSK signaling pathway deficiency. Together, our data reveal that MuSK CRD is critical for NMJ formation and plays an unsuspected role in NMJ maintenance in adulthood.


Assuntos
Glicoproteínas/química , Debilidade Muscular/tratamento farmacológico , Junção Neuromuscular/crescimento & desenvolvimento , Junção Neuromuscular/fisiologia , Receptores Proteína Tirosina Quinases/química , Receptores Proteína Tirosina Quinases/fisiologia , Acetilcolinesterase/metabolismo , Animais , Animais Recém-Nascidos , Fadiga/genética , Fadiga/fisiopatologia , Feminino , Força da Mão/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular , Cloreto de Lítio/farmacologia , Cloreto de Lítio/uso terapêutico , Masculino , Camundongos , Camundongos Transgênicos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/fisiologia , Debilidade Muscular/genética , Debilidade Muscular/fisiopatologia , Mutação , Síndromes Miastênicas Congênitas/tratamento farmacológico , Síndromes Miastênicas Congênitas/genética , Síndromes Miastênicas Congênitas/fisiopatologia , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/ultraestrutura , Gravidez , Cultura Primária de Células , Receptores Proteína Tirosina Quinases/genética , Receptores Colinérgicos/metabolismo
7.
PLoS One ; 7(1): e29976, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22253844

RESUMO

Neuromuscular junction (NMJ) formation requires the highly coordinated communication of several reciprocal signaling processes between motoneurons and their muscle targets. Identification of the early, spatially restricted cues in target recognition at the NMJ is still poorly documented, especially in mammals. Wnt signaling is one of the key pathways regulating synaptic connectivity. Here, we report that Wnt4 contributes to the formation of vertebrate NMJ in vivo. Results from a microarray screen and quantitative RT-PCR demonstrate that Wnt4 expression is regulated during muscle cell differentiation in vitro and muscle development in vivo, being highly expressed when the first synaptic contacts are formed and subsequently downregulated. Analysis of the mouse Wnt4⁻/⁻ NMJ phenotype reveals profound innervation defects including motor axons overgrowing and bypassing AChR aggregates with 30% of AChR clusters being unapposed by nerve terminals. In addition, loss of Wnt4 function results in a 35% decrease of the number of prepatterned AChR clusters while Wnt4 overexpression in cultured myotubes increases the number of AChR clusters demonstrating that Wnt4 directly affects postsynaptic differentiation. In contrast, muscle structure and the localization of several synaptic proteins including acetylcholinesterase, MuSK and rapsyn are not perturbed in the Wnt4 mutant. Finally, we identify MuSK as a Wnt4 receptor. Wnt4 not only interacts with MuSK ectodomain but also mediates MuSK activation. Taken together our data reveal a new role for Wnt4 in mammalian NMJ formation that could be mediated by MuSK, a key receptor in synaptogenesis.


Assuntos
Junção Neuromuscular/embriologia , Vertebrados/embriologia , Proteína Wnt4/metabolismo , Animais , Biomarcadores/metabolismo , Padronização Corporal/genética , Células COS , Chlorocebus aethiops , Análise por Conglomerados , Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Humanos , Camundongos , Células Musculares/metabolismo , Células Musculares/patologia , Músculos/embriologia , Músculos/inervação , Músculos/patologia , Músculos/ultraestrutura , Junção Neuromuscular/metabolismo , Junção Neuromuscular/patologia , Junção Neuromuscular/ultraestrutura , Fosforilação , Ligação Proteica , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Colinérgicos/metabolismo , Vertebrados/genética , Proteína Wnt4/deficiência , Proteína Wnt4/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...