Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Trop Anim Health Prod ; 54(2): 119, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35226193

RESUMO

This study evaluated intake, apparent digestibility, ruminal parameters, nitrogen balance, and microbial protein synthesis in grazing beef cattle fed a mineral mix or combination of two coproducts (cottonseed meal and dried distiller's grains (DDG)) during the wet season. Urochloa brizantha cv. Marandu pastures were managed under continuous stocking to maintain a fixed grazing height of 25 cm using put-and-take methodology. Eight rumen cannulated Nellore steers were used to evaluate the different supplementation strategies. The experiment was composed of four treatments: (1) mineral mixed (MM; ad libitum); (2) energy-protein supplement using corn grain (energy) and cottonseed meal (protein; CS); (3) energy-protein supplement with 50% of the cottonseed meal replaced by DDG (50DDG); and (4) energy-protein supplement with 100% of the cottonseed meal replaced by DDG (100DDG). Except for MM, all supplements were supplied at a level of 0.3% of body weight (BW). A double Latin square was the experimental design performed, with eight cannulated animals, four treatments, across four experimental periods. There was a difference between dry matter and nutrient intake among treatments. The nitrogen balance was different between MM and the other treatments. There was a linear decrease in the rumen ammonia nitrogen levels under CS, 50DDG, and 100DDG. There were no treatment effects on the other parameters evaluated (P ≥ 0.10). Replacing the protein source in the supplement composition did not affect the metabolic parameters and the microbial protein synthesis. Supplementation at a rate of 0.3% BW, compared to MM supplementation, increased the nitrogen utilization efficiency in grazing cattle.


Assuntos
Ração Animal , Rúmen , Ração Animal/análise , Animais , Bovinos , Óleo de Sementes de Algodão/metabolismo , Dieta/veterinária , Suplementos Nutricionais , Digestão , Fermentação , Nitrogênio/metabolismo , Rúmen/metabolismo , Zea mays/metabolismo
2.
Sci Rep ; 11(1): 14786, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34285251

RESUMO

The effects of nitrogen (N) fertilization levels on protein and carbohydrate fractions in Marandu palisadegrass pasture [Urochloa brizantha (Hochst. ex A. Rich.) R.D. Webster] were investigated in a pasture over five years. The experimental design was completely randomized with four levels of N (0, 90, 180, and 270 kg N ha-1, as urea) for five years, and with three replicates. The study was conducted in a continuously stocked pasture during the forage growing season (December to April) in a tropical region. The effects of N fertilization were similar across the five years. With increasing N fertilization, the concentrations of crude protein (CP) increased from 103 to 173 g kg-1 (P < 0.001), soluble fractions (Fraction A + B1) increased from 363 to 434 g kg-1 of total CP (P = 0.006); neutral detergent fiber (NDF) decreased from 609 to 556 g kg-1 (P = 0.037); indigestible NDF (P = 0.046), potentially degradable neutral detergent fiber (P = 0.037), and acid detergent fiber decreased (P = 0.05), and total digestible nutrient (TDN) increased (P < 0.001). Increasing N fertilization decreased the concentrations of Fraction C (P = 0.014) and total carbohydrates (P < 0.0001), and increased CP:organic matter digestibility (P < 0.01). Concentrations of neutral detergent fiber free of ash and protein (P = 0.003), indigestible neutral detergent fiber (P < 0.001), neutral detergent fiber potentially degradable (P = 0.11), CP (P < 0.001), Fraction A + B1 (P < 0.001), Fraction B2 (P < 0.001), Fraction B3 (P < 0.01), and non-structural carbohydrates differed (P < 0.001) across years. Therefore, N fertilization can be used to increase CP, soluble protein, and TDN.


Assuntos
Carboidratos/análise , Proteínas Alimentares/análise , Nitrogênio/metabolismo , Poaceae/química , Ração Animal/análise , Animais , Bovinos , Fertilização
3.
Anim Sci J ; 90(5): 628-636, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30901139

RESUMO

Organic additives are recently being used in animal diets owing to their ability to control metabolic issues and result in better animal performance. Specifically, the organic additive Fator P® presents an additional advantage that is to cause a lesser greenhouse gas emission. This study evaluated whether Fator P® intake changes ruminal parameters or animal performance of beef cattle. Evaluations were carried out in a feedlot experiment divided into growing (46 days; two diets [control mix-CM and standard mix-SM] and finishing (lasted 83 days; four diets: CM, SM, Fator P® + virginiamycin, and Fator P® alone [FP]) trials. Animal performance study involved 48 animals allocated to 12 collective pens in completely randomized experimental design. Ruminal parameters were evaluated in separate metabolism study developed carried out using individual pen with four steers. During growing trial, FP diet resulted in higher (p < 0.05) dry matter intake (DMI) and ruminating time. In the finishing trial, diets containing Fator P® resulted in higher DMI than obtained with CM. Most of the ruminal parameters did not differ (p > 0.05) among dietary treatments. Therefore, Fator P® represents a viable and safe strategy for supplementation to beef cattle finished using high-concentrate diet in feedlot systems.


Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Bovinos/crescimento & desenvolvimento , Bovinos/metabolismo , Dieta/veterinária , Suplementos Nutricionais , Rúmen/metabolismo , Animais , Digestão , Ingestão de Alimentos/fisiologia , Masculino , Aumento de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA