Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 351: 50-80, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35934254

RESUMO

The site-specific delivery of antitumor agents is of importance for providing effective cancer suppression. Poor bioavailability of anticancer compounds and the presence of biological barriers prevent their accumulation in tumor sites. These obstacles can be overcome using liposomal nanostructures. The challenges in cancer chemotherapy and stimuli-responsive nanocarriers are first described in the current review. Then, stimuli-responsive liposomes including pH-, redox-, enzyme-, light-, thermo- and magneto-sensitive nanoparticles are discussed and their potential for delivery of anticancer drugs is emphasized. The pH- or redox-sensitive liposomes are based on internal stimulus and release drug in response to a mildly acidic pH and GSH, respectively. The pH-sensitive liposomes can mediate endosomal escape via proton sponge. The multifunctional liposomes responsive to both redox and pH have more capacity in drug release at tumor site compared to pH- or redox-sensitive alone. The magnetic field and NIR irradiation can be exploited for external stimulation of liposomes. The light-responsive liposomes release drugs when they are exposed to irradiation; thermosensitive-liposomes release drugs at a temperature of >40 °C when there is hyperthermia; magneto-responsive liposomes release drugs in presence of magnetic field. These smart nanoliposomes also mediate co-delivery of drugs and genes in synergistic cancer therapy. Due to lack of long-term toxicity of liposomes, they can be utilized in near future for treatment of cancer patients.


Assuntos
Antineoplásicos , Hipertermia Induzida , Neoplasias , Humanos , Lipossomos/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Neoplasias/tratamento farmacológico , Concentração de Íons de Hidrogênio
2.
Cells ; 10(12)2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34943856

RESUMO

Pancreatic cancer (PC) is one of the leading causes of death and is the fourth most malignant tumor in men. The epigenetic and genetic alterations appear to be responsible for development of PC. Small interfering RNA (siRNA) is a powerful genetic tool that can bind to its target and reduce expression level of a specific gene. The various critical genes involved in PC progression can be effectively targeted using diverse siRNAs. Moreover, siRNAs can enhance efficacy of chemotherapy and radiotherapy in inhibiting PC progression. However, siRNAs suffer from different off target effects and their degradation by enzymes in serum can diminish their potential in gene silencing. Loading siRNAs on nanoparticles can effectively protect them against degradation and can inhibit off target actions by facilitating targeted delivery. This can lead to enhanced efficacy of siRNAs in PC therapy. Moreover, different kinds of nanoparticles such as polymeric nanoparticles, lipid nanoparticles and metal nanostructures have been applied for optimal delivery of siRNAs that are discussed in this article. This review also reveals that how naked siRNAs and their delivery systems can be exploited in treatment of PC and as siRNAs are currently being applied in clinical trials, significant progress can be made by translating the current findings into the clinical settings.


Assuntos
Técnicas de Transferência de Genes , Neoplasias Pancreáticas/terapia , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/uso terapêutico , Animais , Ensaios Clínicos como Assunto , Humanos , Lipossomos/química , Modelos Biológicos , Nanopartículas/química
3.
Front Mol Biosci ; 8: 705102, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34368232

RESUMO

Sweet proteins are the sweetest natural molecules. This aspect prompted several proposals for their use as food additives, mainly because the amounts to be added to food would be very small and safe for people suffering from sucrose-linked diseases. During studies of sweet proteins as food additives we found that their sweetness is affected by water salinity, while there is no influence on protein's structure. Parallel tasting of small size sweeteners revealed no influence of the water quality. This result is explained by the interference of ionic strength with the mechanism of action of sweet proteins and provides an experimental validation of the wedge model for the interaction of proteins with the sweet receptor.

4.
Nano Today ; 382021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34267794

RESUMO

Self-assembled peptides and proteins possess tremendous potential as targeted drug delivery systems and key applications of these well-defined nanostructures reside in anti-cancer therapy. Peptides and proteins can self-assemble into nanostructures of diverse sizes and shapes in response to changing environmental conditions such as pH, temperature, ionic strength, as well as host and guest molecular interactions; their countless benefits include good biocompatibility and high loading capacity for hydrophobic and hydrophilic drugs. These self-assembled nanomaterials can be adorned with functional moieties to specifically target tumor cells. Stimuli-responsive features can also be incorporated with respect to the tumor microenvironment. This review sheds light on the growing interest in self-assembled peptides and proteins and their burgeoning applications in cancer treatment and immunotherapy.

5.
Life (Basel) ; 11(3)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809397

RESUMO

Sweet proteins are a class of proteins with the ability to elicit a sweet sensation in humans upon interaction with sweet taste receptor T1R2/T1R3. Single-chain Monellin, MNEI, is among the sweetest proteins known and it could replace sugar in many food and beverage recipes. Nonetheless, its use is limited by low stability and high aggregation propensity at neutral pH. To solve this inconvenience, we designed a new construct of MNEI, dubbed Mut9, which led to gains in both sweetness and stability. Mut9 showed an extraordinary stability in acidic and neutral environments, where we observed a melting temperature over 20 °C higher than that of MNEI. In addition, Mut9 resulted twice as sweet than MNEI. Both proteins were extensively characterized by biophysical and sensory analyses. Notably, Mut9 preserved its structure and function even after 10 min boiling, with the greatest differences being observed at pH 6.8, where it remained folded and sweet, whereas MNEI lost its structure and function. Finally, we performed a 6-month shelf-life assessment, and the data confirmed the greater stability of the new construct in a wide range of conditions. These data prove that Mut9 has an even greater potential for food and beverage applications than MNEI.

6.
Adv Sci (Weinh) ; 8(8): 2004014, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33898183

RESUMO

The oral cavity and oropharynx are complex environments that are susceptible to physical, chemical, and microbiological insults. They are also common sites for pathological and cancerous changes. The effectiveness of conventional locally-administered medications against diseases affecting these oral milieus may be compromised by constant salivary flow. For systemically-administered medications, drug resistance and adverse side-effects are issues that need to be resolved. New strategies for drug delivery have been investigated over the last decade to overcome these obstacles. Synthesis of nanoparticle-containing agents that promote healing represents a quantum leap in ensuring safe, efficient drug delivery to the affected tissues. Micro/nanoencapsulants with unique structures and properties function as more favorable drug-release platforms than conventional treatment approaches. The present review provides an overview of newly-developed nanocarriers and discusses their potential applications and limitations in various fields of dentistry and oral medicine.


Assuntos
Anti-Infecciosos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Doenças da Boca/tratamento farmacológico , Nanopartículas/administração & dosagem , Engenharia Tecidual/métodos , Administração Oral , Humanos , Neoplasias Bucais/tratamento farmacológico
7.
Carbohydr Polym ; 260: 117809, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33712155

RESUMO

Gene therapy is an emerging and promising strategy in cancer therapy where small interfering RNA (siRNA) system has been deployed for down-regulation of targeted gene and subsequent inhibition in cancer progression; some issues with siRNA, however, linger namely, its off-targeting property and degradation by enzymes. Nanoparticles can be applied for the encapsulation of siRNA thus enhancing its efficacy in gene silencing where chitosan (CS), a linear alkaline polysaccharide derived from chitin, with superb properties such as biodegradability, biocompatibility, stability and solubility, can play a vital role. Herein, the potential of CS nanoparticles has been discussed for the delivery of siRNA in cancer therapy; proliferation, metastasis and chemoresistance are suppressed by siRNA-loaded CS nanoparticles, especially the usage of pH-sensitive CS nanoparticles. CS nanoparticles can provide a platform for the co-delivery of siRNA and anti-tumor agents with their enhanced stability via chemical modifications. As pre-clinical experiments are in agreement with potential of CS-based nanoparticles for siRNA delivery, and these carriers possess biocompatibiliy and are safe, further studies can focus on evaluating their utilization in cancer patients.


Assuntos
Quitosana/química , Nanopartículas/química , Neoplasias/terapia , RNA Interferente Pequeno/uso terapêutico , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Portadores de Fármacos/química , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inativação Gênica , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , RNA Interferente Pequeno/química
8.
Carbohydr Polym ; 250: 116952, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33049857

RESUMO

Graphene-based bionanocomposites are employed in several ailments, such as cancers and infectious diseases, due to their large surface area (to carry drugs), photothermal properties, and ease of their functionalization (owing to their active groups). Modification of graphene-derivatives with polysaccharides is a promising strategy to decrease their toxicity and improve target ability, which consequently enhances their biotherapeutic efficacy. Herein, functionalization of graphene-based materials with carbohydrate polymers (e.g., chitosan, starch, alginate, hyaluronic acid, and cellulose) are presented. Subsequently, recent advances in graphene nanomaterial/polysaccharide-based bionanocomposites in infection treatment and cancer therapy are comprehensively discussed. Pharmacogenomic and toxicity assessments for these bionanocomposites are also highlighted to provide insight for future optimized and smart investigations and researches.


Assuntos
Antineoplásicos/farmacologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia , Grafite/química , Nanocompostos/administração & dosagem , Neoplasias/tratamento farmacológico , Farmacogenética , Polissacarídeos/farmacologia , Antineoplásicos/química , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/etiologia , Humanos , Nanocompostos/química , Neoplasias/genética , Neoplasias/patologia , Polissacarídeos/química
9.
Int J Biol Macromol ; 152: 21-29, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32088237

RESUMO

Peptides and proteins possess an inherent tendency to self-assemble, prompting the formation of amyloid aggregates from their soluble and functional states. Amyloids are linked to many devastating diseases, but self-assembling proteins can also represent formidable tools to produce new and sustainable biomaterials for biomedical and biotechnological applications. The mechanism of fibrillar aggregation, which influences the morphology and the properties of the protein aggregates, depend on factors such as pH, ionic strength, temperature, agitation, and protein concentration. We have here used intensive mechanical agitation, with or without beads, to prompt the aggregation of the single-chain derivative of the plant protein monellin, named MNEI, which is a well characterized sweet protein. Transmission electron microscopy confirmed the formation of fibrils several micrometers long, morphologically different from the previously characterized fibers of MNEI. Changes in the protein secondary structures during the aggregation process were monitored by Fourier transform infrared spectroscopy, which detected differences in the conformation of the final aggregates obtained under mechanical agitation. Moreover, soluble oligomers could be detected in the early phases of aggregation by polyacrylamide gel-electrophoresis. These findings emphasize the existence of multiple pathways of fibrillar aggregation for MNEI, which could be exploited for the design of innovative protein-based biomaterials.


Assuntos
Nanoestruturas/química , Proteínas de Plantas/química , Concentração de Íons de Hidrogênio , Concentração Osmolar , Estrutura Secundária de Proteína , Temperatura
10.
FEBS J ; 287(13): 2808-2822, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31811694

RESUMO

Protein self-assembly is a ubiquitous phenomenon, traditionally studied for its links to amyloid pathologies, which has also gained attention as its physiological roles and possible biotechnological applications emerged over time. It is also known that varying the conditions to which proteins are exposed can lead to aggregate polymorphism. To understand the factors that trigger aggregation and/or direct it toward specific outcomes, we performed a multifaceted structural characterization of the thermally induced self-assembly process of MNEI, a model protein able to form amyloid aggregates under nondenaturing conditions. MNEI is also known for its extreme sweetness which, combined with a considerable thermal stability, makes the protein a promising alternative sweetener. Fourier-transformed infrared spectroscopy and electron microscopy data showed that the presence of NaCl accelerates the kinetics of fibrillar aggregation, while disfavoring the population of off-pathway states that are instead detected by native gel electrophoresis at low ionic strength. NMR studies revealed how NaCl modulates the self-assembling mechanism of MNEI, switching the process from soluble oligomeric forms to fibrils. Comparative analysis demonstrated that the presence of NaCl induces local differences in the protein dynamics and surface accessibility, without altering the native fold. We identified the regions most affected by the presence of NaCl, which control the aggregation process, and represent hot spots on the protein surface for the rational design of new mutants with controlled aggregation propensity.


Assuntos
Amiloide/química , Proteínas Amiloidogênicas/química , Proteínas de Plantas/química , Edulcorantes/química , Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Concentração de Íons de Hidrogênio , Proteínas de Plantas/metabolismo , Dobramento de Proteína , Estrutura Secundária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier , Edulcorantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...